Visible to the public Biblio

Filters: Keyword is k-nearest neighbor  [Clear All Filters]
2023-06-22
Wang, Danni, Li, Sizhao.  2022.  Automated DDoS Attack Mitigation for Software Defined Network. 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :100–104.
Network security is a prominent topic that is gaining international attention. Distributed Denial of Service (DDoS) attack is often regarded as one of the most serious threats to network security. Software Defined Network (SDN) decouples the control plane from the data plane, which can meet various network requirements. But SDN can also become the object of DDoS attacks. This paper proposes an automated DDoS attack mitigation method that is based on the programmability of the Ryu controller and the features of the OpenFlow switch flow tables. The Mininet platform is used to simulate the whole process, from SDN traffic generation to using a K-Nearest Neighbor model for traffic classification, as well as identifying and mitigating DDoS attack. The packet counts of the victim's malicious traffic input port are significantly lower after the mitigation method is implemented than before the mitigation operation. The purpose of mitigating DDoS attack is successfully achieved.
ISSN: 2163-5056
2021-08-17
Shen, Xingfa, Yan, Guo, Yang, Jian, Xu, Sheng.  2020.  WiPass: CSI-based Keystroke Recognition for Numerical Keypad of Smartphones. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :276—283.
Nowadays, smartphones are everywhere. They play an indispensable role in our lives and makes people convenient to communicate, pay, socialize, etc. However, they also bring a lot of security and privacy risks. Keystroke operations of numeric keypad are often required when users input password to perform mobile payment or input other privacy-sensitive information. Different keystrokes may cause different finger movements that will bring different interference to WiFi signal, which may be reflected by channel state information (CSI). In this paper, we propose WiPass, a password-keystroke recognition system for numerical keypad input on smartphones, which especially occurs frequently in mobile payment APPs. Based on only a public WiFi hotspot deployed in the victim payment scenario, WiPass would extracts and analyzes the CSI data generated by the password-keystroke operation of the smartphone user, and infers the user's payment password by comparing the CSI waveforms of different keystrokes. We implemented the WiPass system by using COTS WiFi AP devices and smartphones. The average keystroke segmentation accuracy was 80.45%, and the average keystroke recognition accuracy was 74.24%.
2021-02-16
Başkaya, D., Samet, R..  2020.  DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
2020-09-04
Elkanishy, Abdelrahman, Badawy, Abdel-Hameed A., Furth, Paul M., Boucheron, Laura E., Michael, Christopher P..  2019.  Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
2020-05-22
Li, Xiaodong.  2019.  DURS: A Distributed Method for k-Nearest Neighbor Search on Uncertain Graphs. 2019 20th IEEE International Conference on Mobile Data Management (MDM). :377—378.
Large graphs are increasingly prevalent in mobile networks, social networks, traffic networks and biological networks. These graphs are often uncertain, where edges are augmented with probabilities that indicates the chance to exist. Recently k-nearest neighbor search has been studied within the field of uncertain graphs, but the scalability and efficiency issues are not well solved. Moreover, solutions are implemented on a single machine and thus cannot fit large uncertain graphs. In this paper, we develop a framework, called DURS, to distribute k-nearest neighbor search into several machines and re-partition the uncertain graphs to balance the work loads and reduce the communication costs. Evaluation results show that DURS is essential to make the system scalable when answering k-nearest neighbor queries on uncertain graphs.
2020-04-10
Newaz, AKM Iqtidar, Sikder, Amit Kumar, Rahman, Mohammad Ashiqur, Uluagac, A. Selcuk.  2019.  HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). :389—396.
The integration of Internet-of-Things and pervasive computing in medical devices have made the modern healthcare system “smart.” Today, the function of the healthcare system is not limited to treat the patients only. With the help of implantable medical devices and wearables, Smart Healthcare System (SHS) can continuously monitor different vital signs of a patient and automatically detect and prevent critical medical conditions. However, these increasing functionalities of SHS raise several security concerns and attackers can exploit the SHS in numerous ways: they can impede normal function of the SHS, inject false data to change vital signs, and tamper a medical device to change the outcome of a medical emergency. In this paper, we propose HealthGuard, a novel machine learning-based security framework to detect malicious activities in a SHS. HealthGuard observes the vital signs of different connected devices of a SHS and correlates the vitals to understand the changes in body functions of the patient to distinguish benign and malicious activities. HealthGuard utilizes four different machine learning-based detection techniques (Artificial Neural Network, Decision Tree, Random Forest, k-Nearest Neighbor) to detect malicious activities in a SHS. We trained HealthGuard with data collected for eight different smart medical devices for twelve benign events including seven normal user activities and five disease-affected events. Furthermore, we evaluated the performance of HealthGuard against three different malicious threats. Our extensive evaluation shows that HealthGuard is an effective security framework for SHS with an accuracy of 91 % and an F1 score of 90 %.
2019-05-01
Nadeem, Humaira, Rabbani, Imran Mujaddid, Aslam, Muhammad, M, Martinez Enriquez A..  2018.  KNN-Fuzzy Classification for Cloud Service Selection. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :66:1-66:8.

Cloud computing is an emerging technology that provides services to its users via Internet. It also allows sharing of resources there by reducing cost, money and space. With the popularity of cloud and its advantages, the trend of information industry shifting towards cloud services is increasing tremendously. Different cloud service providers are there on internet to provide services to the users. These services provided have certain parameters to provide better usage. It is difficult for the users to select a cloud service that is best suited to their requirements. Our proposed approach is based on data mining classification technique with fuzzy logic. Proposed algorithm uses cloud service design factors (security, agility and assurance etc.) and international standards to suggest the cloud service. The main objective of this research is to enable the end cloud users to choose best service as per their requirements and meeting international standards. We test our system with major cloud provider Google, Microsoft and Amazon.

2019-02-13
Prakash, A., Priyadarshini, R..  2018.  An Intelligent Software defined Network Controller for preventing Distributed Denial of Service Attack. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :585–589.

Software Defined Network (SDN) architecture is a new and novel way of network management mechanism. In SDN, switches do not process the incoming packets like conventional network computing environment. They match for the incoming packets in the forwarding tables and if there is none it will be sent to the controller for processing which is the operating system of the SDN. A Distributed Denial of Service (DDoS) attack is a biggest threat to cyber security in SDN network. The attack will occur at the network layer or the application layer of the compromised systems that are connected to the network. In this paper a machine learning based intelligent method is proposed which can detect the incoming packets as infected or not. The different machine learning algorithms adopted for accomplishing the task are Naive Bayes, K-Nearest neighbor (KNN) and Support vector machine (SVM) to detect the anomalous behavior of the data traffic. These three algorithms are compared according to their performances and KNN is found to be the suitable one over other two. The performance measure is taken here is the detection rate of infected packets.

2018-06-11
Cai, Y., Huang, H., Cai, H., Qi, Y..  2017.  A K-nearest neighbor locally search regression algorithm for short-term traffic flow forecasting. 2017 9th International Conference on Modelling, Identification and Control (ICMIC). :624–629.

Accurate short-term traffic flow forecasting is of great significance for real-time traffic control, guidance and management. The k-nearest neighbor (k-NN) model is a classic data-driven method which is relatively effective yet simple to implement for short-term traffic flow forecasting. For conventional prediction mechanism of k-NN model, the k nearest neighbors' outputs weighted by similarities between the current traffic flow vector and historical traffic flow vectors is directly used to generate prediction values, so that the prediction results are always not ideal. It is observed that there are always some outliers in k nearest neighbors' outputs, which may have a bad influences on the prediction value, and the local similarities between current traffic flow and historical traffic flows at the current sampling period should have a greater relevant to the prediction value. In this paper, we focus on improving the prediction mechanism of k-NN model and proposed a k-nearest neighbor locally search regression algorithm (k-LSR). The k-LSR algorithm can use locally search strategy to search for optimal nearest neighbors' outputs and use optimal nearest neighbors' outputs weighted by local similarities to forecast short-term traffic flow so as to improve the prediction mechanism of k-NN model. The proposed algorithm is tested on the actual data and compared with other algorithms in performance. We use the root mean squared error (RMSE) as the evaluation indicator. The comparison results show that the k-LSR algorithm is more successful than the k-NN and k-nearest neighbor locally weighted regression algorithm (k-LWR) in forecasting short-term traffic flow, and which prove the superiority and good practicability of the proposed algorithm.