Biblio
The traditional logistics transaction lacks a perfect traceability mechanism, and the data information's integrity and safety are not guaranteed in the existing traceability system. In order to solve the problem of main body responsibility caused by the participation of many stakeholders and the uncompleted supervision system in the process of logistics service transaction, This paper proposes a traceability algorithm for logistics service transactions based on blockchain. Based on the logistics service supply chain and alliance chain, the paper firstly investigates the traditional logistics service supply chain, analyzes the existing problems, and combines the structural characteristics of the blockchain to propose a decentralized new logistics service supply chain concept model based on blockchain. Then, using Globe sandara 1 to standardize the physical products and data circulating in the new logistics service supply chain, form unified and standard traceable data, and propose a multi-dimensional traceable data model based on logistics service supply chain. Based on the proposed model, combined with the business process of the logistics service supply chain and asymmetric encryption, a blockchain-based logistics service transaction traceability algorithm is designed. Finally, the simulation results show that the algorithm realizes the end-to-end traceability of the logistics service supply chain, and the service transaction is transparent while ensuring the integrity and security of the data.
The article deals with the aspects of IT-security of business processes, using a variety of methodological tools, including Integrated Management Systems. Currently, all IMS consist of at least 2 management systems, including the IT-Security Management System. Typically, these IMS cover biggest part of the company business processes, but in practice, there are examples of different scales, even within a single facility. However, it should be recognized that the total number of such projects both in the Russian Federation and in the World is small. The security of business processes will be considered on the example of the incident of Norsk Hydro. In the article the main conclusions are given to confirm the possibility of security, continuity and recovery of critical business processes on the example of this incident.
Security-sensitive workflows impose constraints on the control-flow and authorization policies that may lead to unsatisfiable instances. In these cases, it is still possible to find "least bad" executions where costs associated to authorization violations are minimized, solving the so-called Multi-Objective Workflow Satisfiability Problem (MO-WSP). The MO-WSP is inspired by the Valued WSP and its generalization, the Bi-Objective WSP, but our work considers quantitative solutions to the WSP without abstracting control-flow constraints. In this paper, we define variations of the MO-WSP and solve them using bounded model checking and optimization modulo theories solving. We validate our solutions on real-world workflows and show their scalability on synthetic instances.