Visible to the public Biblio

Filters: Keyword is queueing theory  [Clear All Filters]
2021-07-27
Nweke, Livinus Obiora, Wolthusen, Stephen D..  2020.  Resilience Analysis of Software-Defined Networks Using Queueing Networks. 2020 International Conference on Computing, Networking and Communications (ICNC). :536–542.
Software-Defined Networks (SDN) are being adopted widely and are also likely to be deployed as the infrastructure of systems with critical real-time properties such as Industrial Control Systems (ICS). This raises the question of what security and performance guarantees can be given for the data plane of such critical systems and whether any control plane actions will adversely affect these guarantees, particularly for quality of service in real-time systems. In this paper we study the existing literature on the analysis of SDN using queueing networks and show ways in which models need to be extended to study attacks that are based on arrival rates and service time distributions of flows in SDN.
2021-03-30
Baybulatov, A. A., Promyslov, V. G..  2020.  On a Deterministic Approach to Solving Industrial Control System Problems. 2020 International Russian Automation Conference (RusAutoCon). :115—120.

Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.

2021-03-01
Khoukhi, L., Khatoun, R..  2020.  Safe Traffic Adaptation Model in Wireless Mesh Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1–4.
Wireless mesh networks (WMNs) are dynamically self-organized and self-configured technology ensuring efficient connection to Internet. Such networks suffer from many issues, like lack of performance efficiency when huge amount of traffic are injected inside the networks. To deal with such issues, we propose in this paper an adapted fuzzy framework; by monitoring the rate of change in queue length in addition to the current length of the queue, we are able to provide a measure of future queue state. Furthermore, by using explicit rate messages we can make node sources more responsive to unexpected changes in the network traffic load. The simulation results show the efficiency of the proposed model.
2021-02-08
Fauzan, A., Sukarno, P., Wardana, A. A..  2020.  Overhead Analysis of the Use of Digital Signature in MQTT Protocol for Constrained Device in the Internet of Things System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :415–420.
This paper presents an overhead analysis of the use of digital signature mechanisms in the Message Queue Telemetry Transport (MQTT) protocol for three classes of constrained-device. Because the resources provided by constrained-devices are very limited, the purpose of this overhead analysis is to help find out the advantages and disadvantages of each class of constrained-devices after a security mechanism has been applied, namely by applying a digital signature mechanism. The objective of using this digital signature mechanism is for providing integrity, that if the payload sent and received in its destination is still original and not changed during the transmission process. The overhead analysis aspects performed are including analyzing decryption time, signature verification performance, message delivery time, memory and flash usage in the three classes of constrained-device. Based on the overhead analysis result, it can be seen that for decryption time and signature verification performance, the Class-2 device is the fastest one. For message delivery time, the smallest time needed for receiving the payload is Class-l device. For memory usage, the Class-2 device is providing the biggest available memory and flash.
2020-12-17
Mukhandi, M., Portugal, D., Pereira, S., Couceiro, M. S..  2019.  A novel solution for securing robot communications based on the MQTT protocol and ROS. 2019 IEEE/SICE International Symposium on System Integration (SII). :608—613.

With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.

2020-12-02
Lübben, R., Morgenroth, J..  2019.  An Odd Couple: Loss-Based Congestion Control and Minimum RTT Scheduling in MPTCP. 2019 IEEE 44th Conference on Local Computer Networks (LCN). :300—307.

Selecting the best path in multi-path heterogeneous networks is challenging. Multi-path TCP uses by default a scheduler that selects the path with the minimum round trip time (minRTT). A well-known problem is head-of-line blocking at the receiver when packets arrive out of order on different paths. We shed light on another issue that occurs if scheduling have to deal with deep queues in the network. First, we highlight the relevance by a real-world experiment in cellular networks that often deploy deep queues. Second, we elaborate on the issues with minRTT scheduling and deep queues in a simplified network to illustrate the root causes; namely the interaction of the minRTT scheduler and loss-based congestion control that causes extensive bufferbloat at network elements and distorts RTT measurement. This results in extraordinary large buffer sizes for full utilization. Finally, we discuss mitigation techniques and show how alternative congestion control algorithms mitigate the effect.

Islam, S., Welzl, M., Hiorth, K., Hayes, D., Armitage, G., Gjessing, S..  2018.  ctrlTCP: Reducing latency through coupled, heterogeneous multi-flow TCP congestion control. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :214—219.

We present ctrlTCP, a method to combine the congestion controls of multiple TCP connections. In contrast to the previous methods such as the Congestion Manager, ctrlTCP can couple all TCP flows that leave one sender, traverse a common bottleneck (e.g., a home user's thin uplink) and arrive at different destinations. Using ns-2 simulations and an implementation in the FreeBSD kernel, we show that our mechanism reduces queuing delay, packet loss, and short flow completion times while enabling precise allocation of the share of the available bandwidth between the connections according to the needs of the applications.

2020-09-28
Chertchom, Prajak, Tanimoto, Shigeaki, Konosu, Tsutomu, Iwashita, Motoi, Kobayashi, Toru, Sato, Hiroyuki, Kanai, Atsushi.  2019.  Data Management Portfolio for Improvement of Privacy in Fog-to-cloud Computing Systems. 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI). :884–889.
With the challenge of the vast amount of data generated by devices at the edge of networks, new architecture needs a well-established data service model that accounts for privacy concerns. This paper presents an architecture of data transmission and a data portfolio with privacy for fog-to-cloud (DPPforF2C). We would like to propose a practical data model with privacy from a digitalized information perspective at fog nodes. In addition, we also propose an architecture for implicating the privacy of DPPforF2C used in fog computing. Technically, we design a data portfolio based on the Message Queuing Telemetry Transport (MQTT) and the Advanced Message Queuing Protocol (AMQP). We aim to propose sample data models with privacy architecture because there are some differences in the data obtained from IoT devices and sensors. Thus, we propose an architecture with the privacy of DPPforF2C for publishing data from edge devices to fog and to cloud servers that could be applied to fog architecture in the future.
2020-08-28
Eom, Taehoon, Hong, Jin Bum, An, SeongMo, Park, Jong Sou, Kim, Dong Seong.  2019.  Security and Performance Modeling and Optimization for Software Defined Networking. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :610—617.

Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.

2020-08-13
Aktaş, Mehmet Fatih, Soljanin, Emina.  2019.  Anonymity Mixes as (Partial) Assembly Queues: Modeling and Analysis. 2019 IEEE Information Theory Workshop (ITW). :1—5.
Anonymity platforms route the traffic over a network of special routers that are known as mixes and implement various traffic disruption techniques to hide the communicating users' identities. Batch mixes in particular anonymize communicating peers by allowing message exchange to take place only after a sufficient number of messages (a batch) accumulate, thus introducing delay. We introduce a queueing model for batch mix and study its delay properties. Our analysis shows that delay of a batch mix grows quickly as the batch size gets close to the number of senders connected to the mix. We then propose a randomized batch mixing strategy and show that it achieves much better delay scaling in terms of the batch size. However, randomization is shown to reduce the anonymity preserving capabilities of the mix. We also observe that queueing models are particularly useful to study anonymity metrics that are more practically relevant such as the time-to-deanonymize metric.
2020-07-30
Su, Wei-Tsung, Chen, Wei-Cheng, Chen, Chao-Chun.  2019.  An Extensible and Transparent Thing-to-Thing Security Enhancement for MQTT Protocol in IoT Environment. 2019 Global IoT Summit (GIoTS). :1—4.

Message Queue Telemetry Transport (MQTT) is widely accepted as a data exchange protocol in Internet of Things (IoT) environment. For security, MQTT supports Transport Layer Security (MQTT-TLS). However, MQTT-TLS provides thing-to-broker channel encryption only because data can still be exposed after MQTT broker. In addition, ACL becomes impractical due to the increasing number of rules for authorizing massive IoT devices. For solving these problems, we propose MQTT Thing-to-Thing Security (MQTT-TTS) which provides thing-to-thing security which prevents data leak. MQTT-TTS also provides the extensibility to include demanded security mechanisms for various security requirements. Moreover, the transparency of MQTT-TTS lets IoT application developers implementing secure data exchange with less programming efforts. Our MQTT-TTS implementation is available on https://github.com/beebit-sec/beebit-mqttc-sdk for evaluation.

2020-05-11
Memon, Raheel Ahmed, Li, Jianping, Ahmed, Junaid, Khan, Asif, Nazir, M. Irshad, Mangrio, M. Ismail.  2018.  Modeling of Blockchain Based Systems Using Queuing Theory Simulation. 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :107–111.
Blockchain is the one of leading technology of this time; it has started to revolutionize several fields like, finance, business, industry, smart home, healthcare, social networks, Internet and the Internet of Things. It has many benefits like, decentralized network, robustness, availability, stability, anonymity, auditability and accountability. The applications of Blockchain are emerging, and it is found that most of the work is focused on its engineering implementation. While the theoretical part is very less considered and explored. In this paper we implemented the simulation of mining process in Blockchain based systems using queuing theory. We took the parameters of one of the mature Cryptocurrency, Bitcoin's real data and simulated using M/M/n/L queuing system in JSIMgraph. We have achieved realistic results; and expect that it will open up new research direction in theoretical research of Blockchain based systems.
2020-02-17
Belej, Olexander, Nestor, Natalia, Polotai, Orest, Sadeckii, Jan.  2019.  Features of Application of Data Transmission Protocols in Wireless Networks of Sensors. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :317–322.
This article discusses the vulnerabilities and complexity of designing secure IoT-solutions, and then presents proven approaches to protecting devices and gateways. Specifically, security mechanisms such as device authentication (including certificate-based authentication), device authentication, and application a verification of identification are described. The authors consider a protocol of message queue telemetry transport for speech and sensor networks on the Internet, its features, application variants, and characteristic procedures. The principle of "publishersubscriber" is considered. An analysis of information elements and messages is carried out. The urgency of the theme is due to the rapid development of "publisher-subscriber" architecture, for which the protocol is most characteristic.
2020-01-13
Potrino, Giuseppe, de Rango, Floriano, Santamaria, Amilcare Francesco.  2019.  Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In recent years, technology use has assumed an important role in the support of human activities. Intellectual work has become the main preferred human activity, while structured activities are going to become ever more automatized for increasing their efficiency. For this reason, we assist to the diffusion of ever more innovative devices able to face new emergent problems. These devices can interact with the environment and each other autonomously, taking decisions even without human control. This is the Internet of Things (IoT) phenomenon, favored by low cost, high mobility, high interaction and low power devices. This spread of devices has become uncontrolled, but security in this context continues to increase slowly. The purpose of this work is to model and evaluate a new IoT security system. The context is based on a generic IoT system in the presence of lightweight actuator and sensor nodes exchanging messages through Message Queue Telemetry Transport (MQTT) protocol. This work aims to increase the security of this protocol at application level, particularly mitigating Denial of Service (DoS) attacks. The system is based on the use of a host Intrusion Detection System (IDS) which applies a threshold based packet discarding policy to the different topics defined through MQTT.
2019-05-01
Rayavel, P., Rathnavel, P., Bharathi, M., Kumar, T. Siva.  2018.  Dynamic Traffic Control System Using Edge Detection Algorithm. 2018 International Conference on Soft-Computing and Network Security (ICSNS). :1-5.

As the traffic congestion increases on the transport network, Payable on the road to slower speeds, longer falter times, as a consequence bigger vehicular queuing, it's necessary to introduce smart way to reduce traffic. We are already edging closer to ``smart city-smart travel''. Today, a large number of smart phone applications and connected sat-naves will help get you to your destination in the quickest and easiest manner possible due to real-time data and communication from a host of sources. In present situation, traffic lights are used in each phase. The other way is to use electronic sensors and magnetic coils that detect the congestion frequency and monitor traffic, but found to be more expensive. Hence we propose a traffic control system using image processing techniques like edge detection. The vehicles will be detected using images instead of sensors. The cameras are installed alongside of the road and it will capture image sequence for every 40 seconds. The digital image processing techniques will be applied to analyse and process the image and according to that the traffic signal lights will be controlled.

2018-06-07
El Mir, Iman, Kim, Dong Seong, Haqiq, Abdelkrim.  2017.  Towards a Stochastic Model for Integrated Detection and Filtering of DoS Attacks in Cloud Environments. Proceedings of the 2Nd International Conference on Big Data, Cloud and Applications. :28:1–28:6.
Cloud Data Center (CDC) security remains a major challenge for business organizations and takes an important concern with research works. The attacker purpose is to guarantee the service unavailability and maximize the financial loss costs. As a result, Distributed Denial of Service (DDoS) attacks have appeared as the most popular attack. The main aim of such attacks is to saturate and overload the system network through a massive data packets size flooding toward a victim server and to block the service to users. This paper provides a defending system in order to mitigate the Denial of Service (DoS) attack in CDC environment. Basically it outlines the different techniques of DoS attacks and its countermeasures by combining the filtering and detection mechanisms. We presented an analytical model based on queueing model to evaluate the impact of flooding attack on cloud environment regarding service availability and QoS performance. Consequently, we have plotted the response time, throughput, drop rate and resource computing utilization varying the attack arrival rate. We have used JMT (Java Modeling Tool) simulator to validate the analytical model. Our approach was appeared powerful for attacks mitigation in the cloud environment.
2018-02-21
Lu, Y., Chen, G., Luo, L., Tan, K., Xiong, Y., Wang, X., Chen, E..  2017.  One more queue is enough: Minimizing flow completion time with explicit priority notification. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Ideally, minimizing the flow completion time (FCT) requires millions of priorities supported by the underlying network so that each flow has its unique priority. However, in production datacenters, the available switch priority queues for flow scheduling are very limited (merely 2 or 3). This practical constraint seriously degrades the performance of previous approaches. In this paper, we introduce Explicit Priority Notification (EPN), a novel scheduling mechanism which emulates fine-grained priorities (i.e., desired priorities or DP) using only two switch priority queues. EPN can support various flow scheduling disciplines with or without flow size information. We have implemented EPN on commodity switches and evaluated its performance with both testbed experiments and extensive simulations. Our results show that, with flow size information, EPN achieves comparable FCT as pFabric that requires clean-slate switch hardware. And EPN also outperforms TCP by up to 60.5% if it bins the traffic into two priority queues according to flow size. In information-agnostic setting, EPN outperforms PIAS with two priority queues by up to 37.7%. To the best of our knowledge, EPN is the first system that provides millions of priorities for flow scheduling with commodity switches.

2017-12-28
Zheng, J., Okamura, H., Dohi, T..  2016.  Mean Time to Security Failure of VM-Based Intrusion Tolerant Systems. 2016 IEEE 36th International Conference on Distributed Computing Systems Workshops (ICDCSW). :128–133.

Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.

2017-03-08
Wang, C. H..  2015.  A Modelling Framework for Managing Risk-Based Checkpoint Screening Systems with Two-Type Inspection Queues. 2015 Third International Conference on Robot, Vision and Signal Processing (RVSP). :220–223.

In this paper, we study the security and system congestion in a risk-based checkpoint screening system with two kinds of inspection queues, named as Selectee Lanes and Normal Lanes. Based on the assessed threat value, the arrival crossing the security checkpoints is classified as either a selectee or a non-selectee. The Selectee Lanes with enhanced scrutiny are used to check selectees, while Normal Lanes are used to check non-selectees. The goal of the proposed modelling framework is to minimize the system congestion under the constraints of total security and limited budget. The system congestion of the checkpoint screening system is determined through a steady-state analysis of multi-server queueing models. By solving an optimization model, we can determine the optimal threshold for differentiating the arrivals, and determine the optimal number of security devices for each type of inspection queues. The analysis conducted in this study contributes managerial insights for understanding the operation and system performance of such risk-based checkpoint screening systems.

2015-05-05
Fink, G.A., Griswold, R.L., Beech, Z.W..  2014.  Quantifying cyber-resilience against resource-exhaustion attacks. Resilient Control Systems (ISRCS), 2014 7th International Symposium on. :1-8.

Resilience in the information sciences is notoriously difficult to define much less to measure. But in mechanical engineering, the resilience of a substance is mathematically well-defined as an area under the stress-strain curve. We combined inspiration from mechanics of materials and axioms from queuing theory in an attempt to define resilience precisely for information systems. We first examine the meaning of resilience in linguistic and engineering terms and then translate these definitions to information sciences. As a general assessment of our approach's fitness, we quantify how resilience may be measured in a simple queuing system. By using a very simple model we allow clear application of established theory while being flexible enough to apply to many other engineering contexts in information science and cyber security. We tested our definitions of resilience via simulation and analysis of networked queuing systems. We conclude with a discussion of the results and make recommendations for future work.
 

2015-05-01
El Masri, A., Sardouk, A., Khoukhi, L., Merghem-Boulahia, L., Gaiti, D..  2014.  Multimedia Support in Wireless Mesh Networks Using Interval Type-2 Fuzzy Logic System. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Wireless mesh networks (WMNs) are attracting more and more real time applications. This kind of applications is constrained in terms of Quality of Service (QoS). Existing works in this area are mostly designed for mobile ad hoc networks, which, unlike WMNs, are mainly sensitive to energy and mobility. However, WMNs have their specific characteristics (e.g. static routers and heavy traffic load), which require dedicated QoS protocols. This paper proposes a novel traffic regulation scheme for multimedia support in WMNs. The proposed scheme aims to regulate the traffic sending rate according to the network state, based on the buffer evolution at mesh routers and on the priority of each traffic type. By monitoring the buffer evolution at mesh routers, our scheme is able to predict possible congestion, or QoS violation, early enough before their occurrence; each flow is then regulated according to its priority and to its QoS requirements. The idea behind the proposed scheme is to maintain lightly loaded buffers in order to minimize the queuing delays, as well as, to avoid congestion. Moreover, the regulation process is made smoothly in order to ensure the continuity of real time and interactive services. We use the interval type-2 fuzzy logic system (IT2 FLS), known by its adequacy to uncertain environments, to make suitable regulation decisions. The performance of our scheme is proved through extensive simulations in different network and traffic load scales.

2015-04-30
Hemalatha, A., Venkatesh, R..  2014.  Redundancy management in heterogeneous wireless sensor networks. Communications and Signal Processing (ICCSP), 2014 International Conference on. :1849-1853.

A Wireless sensor network is a special type of Ad Hoc network, composed of a large number of sensor nodes spread over a wide geographical area. Each sensor node has the wireless communication capability and sufficient intelligence for making signal processing and dissemination of data from the collecting center .In this paper deals about redundancy management for improving network efficiency and query reliability in heterogeneous wireless sensor networks. The proposed scheme deals about finding a reliable path by using redundancy management algorithm and detection of unreliable nodes by discarding the path. The redundancy management algorithm finds the reliable path based on redundancy level, average distance between a source node and destination node and analyzes the redundancy level as the path and source redundancy. For finding the path from source CH to processing center we propose intrusion tolerance in the presence of unreliable nodes. Finally we applied our analyzed result to redundancy management algorithm to find the reliable path in which the network efficiency and Query success probability will be improved.