Biblio
Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.
With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.
Selecting the best path in multi-path heterogeneous networks is challenging. Multi-path TCP uses by default a scheduler that selects the path with the minimum round trip time (minRTT). A well-known problem is head-of-line blocking at the receiver when packets arrive out of order on different paths. We shed light on another issue that occurs if scheduling have to deal with deep queues in the network. First, we highlight the relevance by a real-world experiment in cellular networks that often deploy deep queues. Second, we elaborate on the issues with minRTT scheduling and deep queues in a simplified network to illustrate the root causes; namely the interaction of the minRTT scheduler and loss-based congestion control that causes extensive bufferbloat at network elements and distorts RTT measurement. This results in extraordinary large buffer sizes for full utilization. Finally, we discuss mitigation techniques and show how alternative congestion control algorithms mitigate the effect.
We present ctrlTCP, a method to combine the congestion controls of multiple TCP connections. In contrast to the previous methods such as the Congestion Manager, ctrlTCP can couple all TCP flows that leave one sender, traverse a common bottleneck (e.g., a home user's thin uplink) and arrive at different destinations. Using ns-2 simulations and an implementation in the FreeBSD kernel, we show that our mechanism reduces queuing delay, packet loss, and short flow completion times while enabling precise allocation of the share of the available bandwidth between the connections according to the needs of the applications.
Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.
Message Queue Telemetry Transport (MQTT) is widely accepted as a data exchange protocol in Internet of Things (IoT) environment. For security, MQTT supports Transport Layer Security (MQTT-TLS). However, MQTT-TLS provides thing-to-broker channel encryption only because data can still be exposed after MQTT broker. In addition, ACL becomes impractical due to the increasing number of rules for authorizing massive IoT devices. For solving these problems, we propose MQTT Thing-to-Thing Security (MQTT-TTS) which provides thing-to-thing security which prevents data leak. MQTT-TTS also provides the extensibility to include demanded security mechanisms for various security requirements. Moreover, the transparency of MQTT-TTS lets IoT application developers implementing secure data exchange with less programming efforts. Our MQTT-TTS implementation is available on https://github.com/beebit-sec/beebit-mqttc-sdk for evaluation.
As the traffic congestion increases on the transport network, Payable on the road to slower speeds, longer falter times, as a consequence bigger vehicular queuing, it's necessary to introduce smart way to reduce traffic. We are already edging closer to ``smart city-smart travel''. Today, a large number of smart phone applications and connected sat-naves will help get you to your destination in the quickest and easiest manner possible due to real-time data and communication from a host of sources. In present situation, traffic lights are used in each phase. The other way is to use electronic sensors and magnetic coils that detect the congestion frequency and monitor traffic, but found to be more expensive. Hence we propose a traffic control system using image processing techniques like edge detection. The vehicles will be detected using images instead of sensors. The cameras are installed alongside of the road and it will capture image sequence for every 40 seconds. The digital image processing techniques will be applied to analyse and process the image and according to that the traffic signal lights will be controlled.
Ideally, minimizing the flow completion time (FCT) requires millions of priorities supported by the underlying network so that each flow has its unique priority. However, in production datacenters, the available switch priority queues for flow scheduling are very limited (merely 2 or 3). This practical constraint seriously degrades the performance of previous approaches. In this paper, we introduce Explicit Priority Notification (EPN), a novel scheduling mechanism which emulates fine-grained priorities (i.e., desired priorities or DP) using only two switch priority queues. EPN can support various flow scheduling disciplines with or without flow size information. We have implemented EPN on commodity switches and evaluated its performance with both testbed experiments and extensive simulations. Our results show that, with flow size information, EPN achieves comparable FCT as pFabric that requires clean-slate switch hardware. And EPN also outperforms TCP by up to 60.5% if it bins the traffic into two priority queues according to flow size. In information-agnostic setting, EPN outperforms PIAS with two priority queues by up to 37.7%. To the best of our knowledge, EPN is the first system that provides millions of priorities for flow scheduling with commodity switches.
Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.
In this paper, we study the security and system congestion in a risk-based checkpoint screening system with two kinds of inspection queues, named as Selectee Lanes and Normal Lanes. Based on the assessed threat value, the arrival crossing the security checkpoints is classified as either a selectee or a non-selectee. The Selectee Lanes with enhanced scrutiny are used to check selectees, while Normal Lanes are used to check non-selectees. The goal of the proposed modelling framework is to minimize the system congestion under the constraints of total security and limited budget. The system congestion of the checkpoint screening system is determined through a steady-state analysis of multi-server queueing models. By solving an optimization model, we can determine the optimal threshold for differentiating the arrivals, and determine the optimal number of security devices for each type of inspection queues. The analysis conducted in this study contributes managerial insights for understanding the operation and system performance of such risk-based checkpoint screening systems.
Resilience in the information sciences is notoriously difficult to define much less to measure. But in mechanical engineering, the resilience of a substance is mathematically well-defined as an area under the stress-strain curve. We combined inspiration from mechanics of materials and axioms from queuing theory in an attempt to define resilience precisely for information systems. We first examine the meaning of resilience in linguistic and engineering terms and then translate these definitions to information sciences. As a general assessment of our approach's fitness, we quantify how resilience may be measured in a simple queuing system. By using a very simple model we allow clear application of established theory while being flexible enough to apply to many other engineering contexts in information science and cyber security. We tested our definitions of resilience via simulation and analysis of networked queuing systems. We conclude with a discussion of the results and make recommendations for future work.
Wireless mesh networks (WMNs) are attracting more and more real time applications. This kind of applications is constrained in terms of Quality of Service (QoS). Existing works in this area are mostly designed for mobile ad hoc networks, which, unlike WMNs, are mainly sensitive to energy and mobility. However, WMNs have their specific characteristics (e.g. static routers and heavy traffic load), which require dedicated QoS protocols. This paper proposes a novel traffic regulation scheme for multimedia support in WMNs. The proposed scheme aims to regulate the traffic sending rate according to the network state, based on the buffer evolution at mesh routers and on the priority of each traffic type. By monitoring the buffer evolution at mesh routers, our scheme is able to predict possible congestion, or QoS violation, early enough before their occurrence; each flow is then regulated according to its priority and to its QoS requirements. The idea behind the proposed scheme is to maintain lightly loaded buffers in order to minimize the queuing delays, as well as, to avoid congestion. Moreover, the regulation process is made smoothly in order to ensure the continuity of real time and interactive services. We use the interval type-2 fuzzy logic system (IT2 FLS), known by its adequacy to uncertain environments, to make suitable regulation decisions. The performance of our scheme is proved through extensive simulations in different network and traffic load scales.
A Wireless sensor network is a special type of Ad Hoc network, composed of a large number of sensor nodes spread over a wide geographical area. Each sensor node has the wireless communication capability and sufficient intelligence for making signal processing and dissemination of data from the collecting center .In this paper deals about redundancy management for improving network efficiency and query reliability in heterogeneous wireless sensor networks. The proposed scheme deals about finding a reliable path by using redundancy management algorithm and detection of unreliable nodes by discarding the path. The redundancy management algorithm finds the reliable path based on redundancy level, average distance between a source node and destination node and analyzes the redundancy level as the path and source redundancy. For finding the path from source CH to processing center we propose intrusion tolerance in the presence of unreliable nodes. Finally we applied our analyzed result to redundancy management algorithm to find the reliable path in which the network efficiency and Query success probability will be improved.