Biblio
Filters: Author is Nweke, Livinus Obiora [Clear All Filters]
Modelling Adversarial Flow in Software-Defined Industrial Control Networks Using a Queueing Network Model. 2020 IEEE Conference on Communications and Network Security (CNS). :1–6.
.
2020. In recent years, software defined networking (SDN) has been proposed for enhancing the security of industrial control networks. However, its ability to guarantee the quality of service (QoS) requirements of such networks in the presence of adversarial flow still needs to be investigated. Queueing theory and particularly queueing network models have long been employed to study the performance and QoS characteristics of networks. The latter appears to be particularly suitable to capture the behaviour of SDN owing to the dependencies between layers, planes and components in an SDN architecture. Also, several authors have used queueing network models to study the behaviour of different application of SDN architectures, but none of the existing works have considered the strong periodic network traffic in software-defined industrial control networks. In this paper, we propose a queueing network model for softwaredefined industrial control networks, taking into account the strong periodic patterns of the network traffic in the data plane. We derive the performance measures for the analytical model and apply the queueing network model to study the effect of adversarial flow in software-defined industrial control networks.
Resilience Analysis of Software-Defined Networks Using Queueing Networks. 2020 International Conference on Computing, Networking and Communications (ICNC). :536–542.
.
2020. Software-Defined Networks (SDN) are being adopted widely and are also likely to be deployed as the infrastructure of systems with critical real-time properties such as Industrial Control Systems (ICS). This raises the question of what security and performance guarantees can be given for the data plane of such critical systems and whether any control plane actions will adversely affect these guarantees, particularly for quality of service in real-time systems. In this paper we study the existing literature on the analysis of SDN using queueing networks and show ways in which models need to be extended to study attacks that are based on arrival rates and service time distributions of flows in SDN.
Vulnerability Discovery Modelling With Vulnerability Severity. 2019 IEEE Conference on Information and Communication Technology. :1—6.
.
2019. Web browsers are primary targets of attacks because of their extensive uses and the fact that they interact with sensitive data. Vulnerabilities present in a web browser can pose serious risk to millions of users. Thus, it is pertinent to address these vulnerabilities to provide adequate protection for personally identifiable information. Research done in the past has showed that few vulnerability discovery models (VDMs) highlight the characterization of vulnerability discovery process. In these models, severity which is one of the most crucial properties has not been considered. Vulnerabilities can be categorized into different levels based on their severity. The discovery process of each kind of vulnerabilities is different from the other. Hence, it is essential to incorporate the severity of the vulnerabilities during the modelling of the vulnerability discovery process. This paper proposes a model to assess the vulnerabilities present in the software quantitatively with consideration for the severity of the vulnerabilities. It is possible to apply the proposed model to approximate the number of vulnerabilities along with vulnerability discovery rate, future occurrence of vulnerabilities, risk analysis, etc. Vulnerability data obtained from one of the major web browsers (Google Chrome) is deployed to examine goodness-of-fit and predictive capability of the proposed model. Experimental results justify the fact that the model proposed herein can estimate the required information better than the existing VDMs.