Biblio
RPL is a lightweight IPv6 network routing protocol specifically designed by IETF, which can make full use of the energy of intelligent devices and compute the resource to build the flexible topological structure. This paper analyzes the security problems of RPL, sets up a test network to test RPL network security, proposes a RPL based security routing protocol M-RPL. The routing protocol establishes a hierarchical clustering network topology, the intelligent device of the network establishes the backup path in different clusters during the route discovery phase, enable backup paths to ensure data routing when a network is compromised. Setting up a test prototype network, simulating some attacks against the routing protocols in the network. The test results show that the M-RPL network can effectively resist the routing attacks. M-RPL provides a solution to ensure the Internet of Things (IoT) security.
This paper introduces combined data integrity and availability attacks to expand the attack scenarios against power system state estimation. The goal of the adversary, who uses the combined attack, is to perturb the state estimates while remaining hidden from the observer. We propose security metrics that quantify vulnerability of power grids to combined data attacks under single and multi-path routing communication models. In order to evaluate the proposed security metrics, we formulate them as mixed integer linear programming (MILP) problems. The relation between the security metrics of combined data attacks and pure data integrity attacks is analyzed, based on which we show that, when data availability and data integrity attacks have the same cost, the two metrics coincide. When data availability attacks have a lower cost than data integrity attacks, we show that a combined data attack could be executed with less attack resources compared to pure data integrity attacks. Furthermore, it is shown that combined data attacks would bypass integrity-focused mitigation schemes. These conclusions are supported by the results obtained on a power system model with and without a communication model with single or multi-path routing.
Several technologies, such as WiFi, Ethernet and power-line communications (PLC), can be used to build residential and enterprise networks. These technologies often co-exist; most networks use WiFi, and buildings are readily equipped with electrical wires that can offer a capacity up to 1 Gbps with PLC. Yet, current networks do not exploit this rich diversity and often operate far below the available capacity. We design, implement, and evaluate EMPoWER, a system that exploits simultaneously several potentially-interfering mediums. It operates at layer 2.5, between the MAC and IP layers, and combines routing (to find multiple concurrent routes) and congestion control (to efficiently balance traffic across the routes). To optimize resource utilization and robustness, both components exploit the heterogeneous nature of the network. They are fair and efficient, and they operate only within the local area network, without affecting remote Internet hosts. We demonstrate the performance gains of EMPoWER, by simulations and experiments on a 22-node testbed. We show that PLC/WiFi, benefiting from the diversity offered by wireless and electrical mediums, provides significant throughput gains (up to 10x) and improves coverage, compared to multi-channel WiFi.
A Wireless sensor network is a special type of Ad Hoc network, composed of a large number of sensor nodes spread over a wide geographical area. Each sensor node has the wireless communication capability and sufficient intelligence for making signal processing and dissemination of data from the collecting center .In this paper deals about redundancy management for improving network efficiency and query reliability in heterogeneous wireless sensor networks. The proposed scheme deals about finding a reliable path by using redundancy management algorithm and detection of unreliable nodes by discarding the path. The redundancy management algorithm finds the reliable path based on redundancy level, average distance between a source node and destination node and analyzes the redundancy level as the path and source redundancy. For finding the path from source CH to processing center we propose intrusion tolerance in the presence of unreliable nodes. Finally we applied our analyzed result to redundancy management algorithm to find the reliable path in which the network efficiency and Query success probability will be improved.