Visible to the public Biblio

Filters: Keyword is vulnerability analysis  [Clear All Filters]
2018-05-24
Paul, S., Ni, Z..  2017.  Vulnerability Analysis for Simultaneous Attack in Smart Grid Security. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Power grid infrastructures have been exposed to several terrorists and cyber attacks from different perspectives and have resulted in critical system failures. Among different attack strategies, simultaneous attack is feasible for the attacker if enough resources are available at the moment. In this paper, vulnerability analysis for simultaneous attack is investigated, using a modified cascading failure simulator with reduced calculation time than the existing methods. A new damage measurement matrix is proposed with the loss of generation power and time to reach the steady-state condition. The combination of attacks that can result in a total blackout in the shortest time are considered as the strongest simultaneous attack for the system from attacker's viewpoint. The proposed approach can be used for general power system test cases. In this paper, we conducted the experiments on W&W 6 bus system and IEEE 30 bus system for demonstration of the result. The modified simulator can automatically find the strongest attack combinations for reaching maximum damage in terms of generation power loss and time to reach black-out.

Kwon, Y., Kim, H. K., Koumadi, K. M., Lim, Y. H., Lim, J. I..  2017.  Automated Vulnerability Analysis Technique for Smart Grid Infrastructure. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

A smart grid is a fully automated power electricity network, which operates, protects and controls all its physical environments of power electricity infrastructure being able to supply energy in an efficient and reliable way. As the importance of cyber-physical system (CPS) security is growing, various vulnerability analysis methodologies for general systems have been suggested, whereas there has been few practical research targeting the smart grid infrastructure. In this paper, we highlight the significance of security vulnerability analysis in the smart grid environment. Then we introduce various automated vulnerability analysis techniques from executable files. In our approach, we propose a novel binary-based vulnerability discovery method for AMI and EV charging system to automatically extract security-related features from the embedded software. Finally, we present the test result of vulnerability discovery applied for AMI and EV charging system in Korean smart grid environment.

Huang, P., Wang, Y., Yan, G..  2017.  Vulnerability Analysis of Electrical Cyber Physical Systems Using a Simulation Platform. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :489–494.

This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.

2018-04-04
Liang, J., Sankar, L., Kosut, O..  2017.  Vulnerability analysis and consequences of false data injection attack on power system state estimation. 2017 IEEE Power Energy Society General Meeting. :1–1.
An unobservable false data injection (FDI) attack on AC state estimation (SE) is introduced and its consequences on the physical system are studied. With a focus on understanding the physical consequences of FDI attacks, a bi-level optimization problem is introduced whose objective is to maximize the physical line flows subsequent to an FDI attack on DC SE. The maximization is subject to constraints on both attacker resources (size of attack) and attack detection (limiting load shifts) as well as those required by DC optimal power flow (OPF) following SE. The resulting attacks are tested on a more realistic non-linear system model using AC state estimation and ACOPF, and it is shown that, with an appropriately chosen sub-network, the attacker can overload transmission lines with moderate shifts of load.
2018-02-02
Willis, J. M., Mills, R. F., Mailloux, L. O., Graham, S. R..  2017.  Considerations for secure and resilient satellite architectures. 2017 International Conference on Cyber Conflict (CyCon U.S.). :16–22.

Traditionally, the focus of security and ensuring confidentiality, integrity, and availability of data in spacecraft systems has been on the ground segment and the uplink/downlink components. Although these are the most obvious attack vectors, potential security risks against the satellite's platform is also a serious concern. This paper discusses a notional satellite architecture and explores security vulnerabilities using a systems-level approach. Viewing attacks through this paradigm highlights several potential attack vectors that conventional satellite security approaches fail to consider. If left undetected, these could yield physical effects limiting the satellite's mission or performance. The approach presented aids in risk analysis and gives insight into architectural design considerations which improve the system's overall resiliency.

2017-11-27
Sayyadipour, S., Latify, M. A., Yousefi, G. R..  2016.  Vulnerability analysis of power systems during the scheduled maintenance of network facilities. 2016 Smart Grids Conference (SGC). :1–4.

This paper proposes a practical time-phased model to analyze the vulnerability of power systems over a time horizon, in which the scheduled maintenance of network facilities is considered. This model is deemed as an efficient tool that could be used by system operators to assess whether how their systems become vulnerable giving a set of scheduled facility outages. The final model is presented as a single level Mixed-Integer Linear Programming (MILP) problem solvable with commercially available software. Results attained based on the well-known IEEE 24-Bus Reliability Test System (RTS) appreciate the applicability of the model and highlight the necessity of considering the scheduled facility outages in assessing the vulnerability of a power system.

2017-08-22
Xu, Jun, Mu, Dongliang, Chen, Ping, Xing, Xinyu, Wang, Pei, Liu, Peng.  2016.  CREDAL: Towards Locating a Memory Corruption Vulnerability with Your Core Dump. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :529–540.

After a program has crashed and terminated abnormally, it typically leaves behind a snapshot of its crashing state in the form of a core dump. While a core dump carries a large amount of information, which has long been used for software debugging, it barely serves as informative debugging aids in locating software faults, particularly memory corruption vulnerabilities. A memory corruption vulnerability is a special type of software faults that an attacker can exploit to manipulate the content at a certain memory. As such, a core dump may contain a certain amount of corrupted data, which increases the difficulty in identifying useful debugging information (e.g. , a crash point and stack traces). Without a proper mechanism to deal with this problem, a core dump can be practically useless for software failure diagnosis. In this work, we develop CREDAL, an automatic tool that employs the source code of a crashing program to enhance core dump analysis and turns a core dump to an informative aid in tracking down memory corruption vulnerabilities. Specifically, CREDAL systematically analyzes a core dump potentially corrupted and identifies the crash point and stack frames. For a core dump carrying corrupted data, it goes beyond the crash point and stack trace. In particular, CREDAL further pinpoints the variables holding corrupted data using the source code of the crashing program along with the stack frames. To assist software developers (or security analysts) in tracking down a memory corruption vulnerability, CREDAL also performs analysis and highlights the code fragments corresponding to data corruption. To demonstrate the utility of CREDAL, we use it to analyze 80 crashes corresponding to 73 memory corruption vulnerabilities archived in Offensive Security Exploit Database. We show that, CREDAL can accurately pinpoint the crash point and (fully or partially) restore a stack trace even though a crashing program stack carries corrupted data. In addition, we demonstrate CREDAL can potentially reduce the manual effort of finding the code fragment that is likely to contain memory corruption vulnerabilities.

2017-08-18
Cook, Kyle, Shaw, Thomas, Hawrylak, Peter, Hale, John.  2016.  Scalable Attack Graph Generation. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :21:1–21:4.

Attack graphs are a powerful modeling technique with which to explore the attack surface of a system. However, they can be difficult to generate due to the exponential growth of the state space, often times making exhaustive search impractical. This paper discusses an approach for generating large attack graphs with an emphasis on scalable generation over a distributed system. First, a serial algorithm is presented, highlighting bottlenecks and opportunities to exploit inherent concurrency in the generation process. Then a strategy to parallelize this process is presented. Finally, we discuss plans for future work to implement the parallel algorithm using a hybrid distributed/shared memory programming model on a heterogeneous compute node cluster.

2017-05-19
Alves, Thiago, Das, Rishabh, Morris, Thomas.  2016.  Virtualization of Industrial Control System Testbeds for Cybersecurity. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :10–14.

With an immense number of threats pouring in from nation states and hacktivists as well as terrorists and cybercriminals, the requirement of a globally secure infrastructure becomes a major obligation. Most critical infrastructures were primarily designed to work isolated from the normal communication network, but due to the advent of the "Smart Grid" that uses advanced and intelligent approaches to control critical infrastructure, it is necessary for these cyber-physical systems to have access to the communication system. Consequently, such critical systems have become prime targets; hence security of critical infrastructure is currently one of the most challenging research problems. Performing an extensive security analysis involving experiments with cyber-attacks on a live industrial control system (ICS) is not possible. Therefore, researchers generally resort to test beds and complex simulations to answer questions related to SCADA systems. Since all conclusions are drawn from the test bed, it is necessary to perform validation against a physical model. This paper examines the fidelity of a virtual SCADA testbed to a physical test bed and allows for the study of the effects of cyber- attacks on both of the systems.

2015-05-01
Sierla, S., Hurkala, M., Charitoudi, K., Chen-Wei Yang, Vyatkin, V..  2014.  Security risk analysis for smart grid automation. Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. :1737-1744.

The reliability theory used in the design of complex systems including electric grids assumes random component failures and is thus unsuited to analyzing security risks due to attackers that intentionally damage several components of the system. In this paper, a security risk analysis methodology is proposed consisting of vulnerability analysis and impact analysis. Vulnerability analysis is a method developed by security engineers to identify the attacks that are relevant for the system under study, and in this paper, the analysis is applied on the communications network topology of the electric grid automation system. Impact analysis is then performed through co-simulation of automation and the electric grid to assess the potential damage from the attacks. This paper makes an extensive review of vulnerability and impact analysis methods and relevant system modeling techniques from the fields of security and industrial automation engineering, with a focus on smart grid automation, and then applies and combines approaches to obtain a security risk analysis methodology. The methodology is demonstrated with a case study of fault location, isolation and supply restoration smart grid automation.

Marashi, K., Sarvestani, S.S..  2014.  Towards Comprehensive Modeling of Reliability for Smart Grids: Requirements and Challenges. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :105-112.


Smart grids utilize computation and communication to improve the efficacy and dependability of power generation, transmission, and distribution. As such, they are among the most critical and complex cyber-physical systems. The success of smart grids in achieving their stated goals is yet to be rigorously proven. In this paper, our focus is on improvements (or lack thereof) in reliability. We discuss vulnerabilities in the smart grid and their potential impact on its reliability, both generally and for the specific example of the IEEE-14 bus system. We conclude the paper by presenting a preliminary Markov imbedded systems model for reliability of smart grids and describe how it can be evolved to capture the vulnerabilities discussed.
 

Yihai Zhu, Jun Yan, Yufei Tang, Yan Sun, Haibo He.  2014.  The sequential attack against power grid networks. Communications (ICC), 2014 IEEE International Conference on. :616-621.

The vulnerability analysis is vital for safely running power grids. The simultaneous attack, which applies multiple failures simultaneously, does not consider the time domain in applying failures, and is limited to find unknown vulnerabilities of power grid networks. In this paper, we discover a new attack scenario, called the sequential attack, in which the failures of multiple network components (i.e., links/nodes) occur at different time. The sequence of such failures can be carefully arranged by attackers in order to maximize attack performances. This attack scenario leads to a new angle to analyze and discover vulnerabilities of grid networks. The IEEE 39 bus system is adopted as test benchmark to compare the proposed attack scenario with the existing simultaneous attack scenario. New vulnerabilities are found. For example, the sequential failure of two links, e.g., links 26 and 39 in the test benchmark, can cause 80% power loss, whereas the simultaneous failure of them causes less than 10% power loss. In addition, the sequential attack is demonstrated to be statistically stronger than the simultaneous attack. Finally, several metrics are compared and discussed in terms of whether they can be used to sharply reduce the search space for identifying strong sequential attacks.