Visible to the public Biblio

Filters: Keyword is analytical hierarchy process  [Clear All Filters]
2020-07-20
Haque, Md Ariful, Shetty, Sachin, Krishnappa, Bheshaj.  2019.  Modeling Cyber Resilience for Energy Delivery Systems Using Critical System Functionality. 2019 Resilience Week (RWS). 1:33–41.

In this paper, we analyze the cyber resilience for the energy delivery systems (EDS) using critical system functionality (CSF). Some research works focus on identification of critical cyber components and services to address the resiliency for the EDS. Analysis based on the devices and services excluding the system behavior during an adverse event would provide partial analysis of cyber resilience. To address the gap, in this work, we utilize the vulnerability graph representation of EDS to compute the system functionality under adverse condition. We use network criticality metric to determine CSF. We estimate the criticality metric using graph Laplacian matrix and network performance after removing links (i.e., disabling control functions, or services). We model the resilience of the EDS using CSF, and system recovery curve. We also provide a comprehensive analysis of cyber resilience by determining the critical devices using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytical Hierarchy Process) methods. We present use cases of EDS illustrating the way control functions and services in EDS map to the vulnerability graph model. The simulation results show that we can estimate the resilience metric using different types of graphs that may assist in making an informed decision about EDS resilience.

2015-05-06
Farzan, F., Jafari, M.A., Wei, D., Lu, Y..  2014.  Cyber-related risk assessment and critical asset identification in power grids. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
 

Saini, V.K., Kumar, V..  2014.  AHP, fuzzy sets and TOPSIS based reliable route selection for MANET. Computing for Sustainable Global Development (INDIACom), 2014 International Conference on. :24-29.

Route selection is a very sensitive activity for mobile ad-hoc network (MANET) and ranking of multiple routes from source node to destination node can result in effective route selection and can provide many other benefits for better performance and security of MANET. This paper proposes an evaluation model based on analytical hierarchy process (AHP), fuzzy sets and technique for order performance by similarity to ideal solution (TOPSIS) to provide a useful solution for ranking of routes. The proposed model utilizes AHP to acquire criteria weights, fuzzy sets to describe vagueness with linguistic values and triangular fuzzy numbers, and TOPSIS to obtain the final ranking of routes. Final ranking of routes facilitates selection of best and most reliable route and provide alternative options for making a robust Mobile Ad-hoc network.

2015-05-01
Farzan, F., Jafari, M.A., Wei, D., Lu, Y..  2014.  Cyber-related risk assessment and critical asset identification in power grids. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.

Farzan, F., Jafari, M.A., Wei, D., Lu, Y..  2014.  Cyber-related risk assessment and critical asset identification in power grids. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.