Visible to the public Biblio

Filters: Keyword is cyber-physical production systems  [Clear All Filters]
2022-10-16
Lipps, Christoph, Mallikarjun, Sachinkumar Bavikatti, Strufe, Matthias, Heinz, Christopher, Grimm, Christoph, Schotten, Hans Dieter.  2020.  Keep Private Networks Private: Secure Channel-PUFs, and Physical Layer Security by Linear Regression Enhanced Channel Profiles. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :93–100.
In the context of a rapidly changing and increasingly complex (industrial) production landscape, securing the (communication) infrastructure is becoming an ever more important but also more challenging task - accompanied by the application of radio communication. A worthwhile and promising approach to overcome the arising attack vectors, and to keep private networks private, are Physical Layer Security (PhySec) implementations. The paper focuses on the transfer of the IEEE802.11 (WLAN) PhySec - Secret Key Generation (SKG) algorithms to Next Generation Mobile Networks (NGMNs), as they are the driving forces and key enabler of future industrial networks. Based on a real world Long Term Evolution (LTE) testbed, improvements of the SKG algorithms are validated. The paper presents and evaluates significant improvements in the establishment of channel profiles, whereby especially the Bit Disagreement Rate (BDR) can be improved substantially. The combination of the Discrete Cosine Transformation (DCT) and the supervised Machine Learning (ML) algorithm - Linear Regression (LR) - provides outstanding results, which can be used beyond the SKG application. The evaluation also emphasizes the appropriateness of PhySec for securing private networks.
2020-10-12
Eckhart, Matthias, Ekelhart, Andreas, Lüder, Arndt, Biffl, Stefan, Weippl, Edgar.  2019.  Security Development Lifecycle for Cyber-Physical Production Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3004–3011.

As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.

2020-01-13
Lipps, Christoph, Krummacker, Dennis, Schotten, Hans Dieter.  2019.  Securing Industrial Wireless Networks: Enhancing SDN with PhySec. 2019 Conference on Next Generation Computing Applications (NextComp). :1–7.
The requirements regarding network management defined by the continuously rising amount of interconnected devices in the industrial landscape turns it into an increasingly complex task. Associated by the fusion of technologies up to Cyber-Physical Production Systems (CPPS) and the Industrial Internet of Things (IIoT) with its multitude of communicating sensors and actuators new demands arise. In particular, the driving forces of this development, mobility and flexibility, are affecting today's networks. However, it is precisely these wireless solutions, as enabler for this advancement, that create new attack vectors and cyber-security threats. Furthermore, many cryptographic procedures, intended to secure the networks, require additional overhead, which is limiting the transmission bandwidth and speed as well. For this reason, new and efficient solutions must be developed and applied, in order to secure the existing, as well as the future, industrial communication networks. This work proposes a conceptual approach, consisting of a combination of Software-Defined Networking (SDN) and Physical Layer Security (PhySec) to satisfy the network security requirements. Use cases are explained that demonstrate the appropriateness of the approach and it is shown that this is a easy to use and resource efficient, but nevertheless sound and secure approach.
2018-11-14
Afanasev, M. Y., Krylova, A. A., Shorokhov, S. A., Fedosov, Y. V., Sidorenko, A. S..  2018.  A Design of Cyber-Physical Production System Prototype Based on an Ethereum Private Network. 2018 22nd Conference of Open Innovations Association (FRUCT). :3–11.

The concept of cyber-physical production systems is highly discussed amongst researchers and industry experts, however, the implementation options for these systems rely mainly on obsolete technologies. Despite the fact that the blockchain is most often associated with cryptocurrency, it is fundamentally wrong to deny the universality of this technology and the prospects for its application in other industries. For example, in the insurance sector or in a number of identity verification services. This article discusses the deployment of the CPPS backbone network based on the Ethereum private blockchain system. The structure of the network is described as well as its interaction with the help of smart contracts, based on the consumption of cryptocurrency for various operations.