Visible to the public Biblio

Filters: Keyword is manufacturing systems  [Clear All Filters]
2021-03-09
Herrera, A. E. Hinojosa, Walshaw, C., Bailey, C..  2020.  Improving Black Box Classification Model Veracity for Electronics Anomaly Detection. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1092–1097.
Data driven classification models are useful to assess quality of manufactured electronics. Because decisions are taken based on the models, their veracity is relevant, covering aspects such as accuracy, transparency and clarity. The proposed BB-Stepwise algorithm aims to improve the classification model transparency and accuracy of black box models. K-Nearest Neighbours (KNN) is a black box model which is easy to implement and has achieved good classification performance in different applications. In this paper KNN-Stepwise is illustrated for fault detection of electronics devices. The results achieved shows that the proposed algorithm was able to improve the accuracy, veracity and transparency of KNN models and achieve higher transparency and clarity, and at least similar accuracy than when using Decision Tree models.
2020-12-01
Nikander, P., Autiosalo, J., Paavolainen, S..  2019.  Interledger for the Industrial Internet of Things. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:908—915.

The upsurge of Industrial Internet of Things is forcing industrial information systems to enable less hierarchical information flow. The connections between humans, devices, and their digital twins are growing in numbers, creating a need for new kind of security and trust solutions. To address these needs, industries are applying distributed ledger technologies, aka blockchains. A significant number of use cases have been studied in the sectors of logistics, energy markets, smart grid security, and food safety, with frequently reported benefits in transparency, reduced costs, and disintermediation. However, distributed ledger technologies have challenges with transaction throughput, latency, and resource requirements, which render the technology unusable in many cases, particularly with constrained Internet of Things devices.To overcome these challenges within the Industrial Internet of Things, we suggest a set of interledger approaches that enable trusted information exchange across different ledgers and constrained devices. With these approaches, the technically most suitable ledger technology can be selected for each use case while simultaneously enjoying the benefits of the most widespread ledger implementations. We present state of the art for distributed ledger technologies to support the use of interledger approaches in industrial settings.

2020-11-09
Li, H., Patnaik, S., Sengupta, A., Yang, H., Knechtel, J., Yu, B., Young, E. F. Y., Sinanoglu, O..  2019.  Attacking Split Manufacturing from a Deep Learning Perspective. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1–6.
The notion of integrated circuit split manufacturing which delegates the front-end-of-line (FEOL) and back-end-of-line (BEOL) parts to different foundries, is to prevent overproduction, piracy of the intellectual property (IP), or targeted insertion of hardware Trojans by adversaries in the FEOL facility. In this work, we challenge the security promise of split manufacturing by formulating various layout-level placement and routing hints as vector- and image-based features. We construct a sophisticated deep neural network which can infer the missing BEOL connections with high accuracy. Compared with the publicly available network-flow attack [1], for the same set of ISCAS-85benchmarks, we achieve 1.21× accuracy when splitting on M1 and 1.12× accuracy when splitting on M3 with less than 1% running time.
2020-10-12
Eckhart, Matthias, Ekelhart, Andreas, Lüder, Arndt, Biffl, Stefan, Weippl, Edgar.  2019.  Security Development Lifecycle for Cyber-Physical Production Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3004–3011.

As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.

2020-04-17
Brugman, Jonathon, Khan, Mohammed, Kasera, Sneha, Parvania, Masood.  2019.  Cloud Based Intrusion Detection and Prevention System for Industrial Control Systems Using Software Defined Networking. 2019 Resilience Week (RWS). 1:98—104.

Industrial control systems (ICS) are becoming more integral to modern life as they are being integrated into critical infrastructure. These systems typically lack application layer encryption and the placement of common network intrusion services have large blind spots. We propose the novel architecture, Cloud Based Intrusion Detection and Prevention System (CB-IDPS), to detect and prevent threats in ICS networks by using software defined networking (SDN) to route traffic to the cloud for inspection using network function virtualization (NFV) and service function chaining. CB-IDPS uses Amazon Web Services to create a virtual private cloud for packet inspection. The CB-IDPS framework is designed with considerations to the ICS delay constraints, dynamic traffic routing, scalability, resilience, and visibility. CB-IDPS is presented in the context of a micro grid energy management system as the test case to prove that the latency of CB-IDPS is within acceptable delay thresholds. The implementation of CB-IDPS uses the OpenDaylight software for the SDN controller and commonly used network security tools such as Zeek and Snort. To our knowledge, this is the first attempt at using NFV in an ICS context for network security.

2020-01-13
Mohamed, Nader, Al-Jaroodi, Jameela.  2019.  A Middleware Framework to Address Security Issues in Integrated Multisystem Applications. 2019 IEEE International Systems Conference (SysCon). :1–6.
Integrating multiple programmable components and subsystems developed by different manufacturers into a final system (a system of systems) can create some security concerns. While there are many efforts for developing interoperability approaches to enable smooth, reliable and safe integration among different types of components to build final systems for different applications, less attention is usually given for the security aspects of this integration. This may leave the final systems exposed and vulnerable to potential security attacks. The issues elevate further when such systems are also connected to other networks such as the Internet or systems like fog and cloud computing. This issue can be found in important industrial applications like smart medical, smart manufacturing and smart city systems. As a result, along with performance, safety and reliability; multisystem integration must also be highly secure. This paper discusses the security issues instigated by such integration. In addition, it proposes a middleware framework to address the security issues for integrated multisystem applications.
2019-03-06
Kawanishi, Y., Nishihara, H., Souma, D., Yoshida, H., Hata, Y..  2018.  A Study on Quantitative Risk Assessment Methods in Security Design for Industrial Control Systems. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :62-69.

In recent years, there has been progress in applying information technology to industrial control systems (ICS), which is expected to make the development cost of control devices and systems lower. On the other hand, the security threats are becoming important problems. In 2017, a command injection issue on a data logger was reported. In this paper, we focus on the risk assessment in security design for data loggers used in industrial control systems. Our aim is to provide a risk assessment method optimized for control devices and systems in such a way that one can prioritize threats more preciously, that would lead work resource (time and budget) can be assigned for more important threats than others. We discuss problems with application of the automotive-security guideline of JASO TP15002 to ICS risk assessment. Consequently, we propose a three-phase risk assessment method with a novel Risk Scoring Systems (RSS) for quantitative risk assessment, RSS-CWSS. The idea behind this method is to apply CWSS scoring systems to RSS by fixing values for some of CWSS metrics, considering what the designers can evaluate during the concept phase. Our case study with ICS employing a data logger clarifies that RSS-CWSS can offer an interesting property that it has better risk-score dispersion than the TP15002-specified RSS.

2018-12-03
Shearon, C. E..  2018.  IPC-1782 standard for traceability of critical items based on risk. 2018 Pan Pacific Microelectronics Symposium (Pan Pacific). :1–3.

Traceability has grown from being a specialized need for certain safety critical segments of the industry, to now being a recognized value-add tool for the industry as a whole that can be utilized for manual to automated processes End to End throughout the supply chain. The perception of traceability data collection persists as being a burden that provides value only when the most rare and disastrous of events take place. Disparate standards have evolved in the industry, mainly dictated by large OEM companies in the market create confusion, as a multitude of requirements and definitions proliferate. The intent of the IPC-1782 project is to bring the whole principle of traceability up to date and enable business to move faster, increase revenue, increase productivity, and decrease costs as a result of increased trust. Traceability, as defined in this standard will represent the most effective quality tool available, becoming an intrinsic part of best practice operations, with the encouragement of automated data collection from existing manufacturing systems which works well with Industry 4.0, integrating quality, reliability, product safety, predictive (routine, preventative, and corrective) maintenance, throughput, manufacturing, engineering and supply-chain data, reducing cost of ownership as well as ensuring timeliness and accuracy all the way from a finished product back through to the initial materials and granular attributes about the processes along the way. The goal of this standard is to create a single expandable and extendable data structure that can be adopted for all levels of traceability and enable easily exchanged information, as appropriate, across many industries. The scope includes support for the most demanding instances for detail and integrity such as those required by critical safety systems, all the way through to situations where only basic traceability, such as for simple consumer products, are required. A key driver for the adoption of the standard is the ability to find a relevant and achievable level of traceability that exactly meets the requirement following risk assessment of the business. The wealth of data accessible from traceability for analysis (e.g.; Big Data, etc.) can easily and quickly yield information that can raise expectations of very significant quality and performance improvements, as well as providing the necessary protection against the costs of issues in the market and providing very timely information to regulatory bodies along with consumers/customers as appropriate. This information can also be used to quickly raise yields, drive product innovation that resonates with consumers, and help drive development tests & design requirements that are meaningful to the Marketplace. Leveraging IPC 1782 to create the best value of Component Traceability for your business.

2018-11-14
Afanasev, M. Y., Krylova, A. A., Shorokhov, S. A., Fedosov, Y. V., Sidorenko, A. S..  2018.  A Design of Cyber-Physical Production System Prototype Based on an Ethereum Private Network. 2018 22nd Conference of Open Innovations Association (FRUCT). :3–11.

The concept of cyber-physical production systems is highly discussed amongst researchers and industry experts, however, the implementation options for these systems rely mainly on obsolete technologies. Despite the fact that the blockchain is most often associated with cryptocurrency, it is fundamentally wrong to deny the universality of this technology and the prospects for its application in other industries. For example, in the insurance sector or in a number of identity verification services. This article discusses the deployment of the CPPS backbone network based on the Ethereum private blockchain system. The structure of the network is described as well as its interaction with the help of smart contracts, based on the consumption of cryptocurrency for various operations.