Biblio
Federated learning is a novel distributed learning framework, where the deep learning model is trained in a collaborative manner among thousands of participants. The shares between server and participants are only model parameters, which prevent the server from direct access to the private training data. However, we notice that the federated learning architecture is vulnerable to an active attack from insider participants, called poisoning attack, where the attacker can act as a benign participant in federated learning to upload the poisoned update to the server so that he can easily affect the performance of the global model. In this work, we study and evaluate a poisoning attack in federated learning system based on generative adversarial nets (GAN). That is, an attacker first acts as a benign participant and stealthily trains a GAN to mimic prototypical samples of the other participants' training set which does not belong to the attacker. Then these generated samples will be fully controlled by the attacker to generate the poisoning updates, and the global model will be compromised by the attacker with uploading the scaled poisoning updates to the server. In our evaluation, we show that the attacker in our construction can successfully generate samples of other benign participants using GAN and the global model performs more than 80% accuracy on both poisoning tasks and main tasks.
Person re-identification(Person Re-ID) means that images of a pedestrian from cameras in a surveillance camera network can be automatically retrieved based on one of this pedestrian's image from another camera. The appearance change of pedestrians under different cameras poses a huge challenge to person re-identification. Person re-identification systems based on deep learning can effectively extract the appearance features of pedestrians. In this paper, the feature enhancement experiment is conducted, and the result showed that the current person reidentification datasets are relatively small and cannot fully meet the need of deep training. Therefore, this paper studied the method of using generative adversarial network to extend the person re-identification datasets and proposed a label smoothing regularization for outliers with weight (LSROW) algorithm to make full use of the generated data, effectively improved the accuracy of person re-identification.
Distractor generation is a crucial step for fill-in-the-blank question generation. We propose a generative model learned from training generative adversarial nets (GANs) to create useful distractors. Our method utilizes only context information and does not use the correct answer, which is completely different from previous Ontology-based or similarity-based approaches. Trained on the Wikipedia corpus, the proposed model is able to predict Wiki entities as distractors. Our method is evaluated on two biology question datasets collected from Wikipedia and actual college-level exams. Experimental results show that our context-based method achieves comparable performance to a frequently used word2vec-based method for the Wiki dataset. In addition, we propose a second-stage learner to combine the strengths of the two methods, which further improves the performance on both datasets, with 51.7% and 48.4% of generated distractors being acceptable.