Visible to the public Biblio

Filters: Keyword is IoBT network  [Clear All Filters]
2021-02-22
Doku, R., Rawat, D. B., Garuba, M., Njilla, L..  2020.  Fusion of Named Data Networking and Blockchain for Resilient Internet-of-Battlefield-Things. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Named Data Network's (NDN) data-centric approach makes it a suitable solution in a networking scenario where there are connectivity issues as a result of the dynamism of the network. Coupling of this ability with the blockchain's well-documented immutable trustworthy-distributed ledger feature, the union of blockchain and NDN in an Internet-of-Battlefield-Things (IoBT) setting could prove to be the ideal alliance that would guarantee data exchanged in an IoBT environment is trusted and less susceptible to cyber-attacks and packet losses. Various blockchain technologies, however, require that each node has a ledger that stores information or transactions in a chain of blocks. This poses an issue as nodes in an IoBT setting have varying computing and storage resources. Moreover, most of the nodes in the IoT/IoBT network are plagued with limited resources. As such, there needs to be an approach that ensures that the limited resources of these nodes are efficiently utilized. In this paper, we investigate an approach that merges blockchain and NDN to efficiently utilize the resources of these resource-constrained nodes by only storing relevant information on each node's ledger. Furthermore, we propose a sharding technique called an Interest Group and introduce a novel consensus mechanism called Proof of Common Interest. Performance of the proposed approach is evaluated using numerical results.
2020-11-17
Hu, Y., Sanjab, A., Saad, W..  2019.  Dynamic Psychological Game Theory for Secure Internet of Battlefield Things (IoBT) Systems. IEEE Internet of Things Journal. 6:3712—3726.

In this paper, a novel anti-jamming mechanism is proposed to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, the problem is formulated as a dynamic psychological game between a soldier and an attacker. In this game, the soldier seeks to accomplish a time-critical mission by traversing a battlefield within a certain amount of time, while maintaining its connectivity with an IoBT network. The attacker, on the other hand, seeks to find the optimal opportunity to compromise the IoBT network and maximize the delay of the soldier's IoBT transmission link. The soldier and the attacker's psychological behavior are captured using tools from psychological game theory, with which the soldier's and attacker's intentions to harm one another are considered in their utilities. To solve this game, a novel learning algorithm based on Bayesian updating is proposed to find an ∈ -like psychological self-confirming equilibrium of the game.

2018-12-10
Abuzainab, N., Saad, W..  2018.  Dynamic Connectivity Game for Adversarial Internet of Battlefield Things Systems. IEEE Internet of Things Journal. 5:378–390.

In this paper, the problem of network connectivity is studied for an adversarial Internet of Battlefield Things (IoBT) system in which an attacker aims at disrupting the connectivity of the network by choosing to compromise one of the IoBT nodes at each time epoch. To counter such attacks, an IoBT defender attempts to reestablish the IoBT connectivity by either deploying new IoBT nodes or by changing the roles of existing nodes. This problem is formulated as a dynamic multistage Stackelberg connectivity game that extends classical connectivity games and that explicitly takes into account the characteristics and requirements of the IoBT network. In particular, the defender's payoff captures the IoBT latency as well as the sum of weights of disconnected nodes at each stage of the game. Due to the dependence of the attacker's and defender's actions at each stage of the game on the network state, the feedback Stackelberg solution [feedback Stackelberg equilibrium (FSE)] is used to solve the IoBT connectivity game. Then, sufficient conditions under which the IoBT system will remain connected, when the FSE solution is used, are determined analytically. Numerical results show that the expected number of disconnected sensors, when the FSE solution is used, decreases up to 46% compared to a baseline scenario in which a Stackelberg game with no feedback is used, and up to 43% compared to a baseline equal probability policy.