Visible to the public Biblio

Filters: Keyword is smart meters  [Clear All Filters]
2023-03-03
Aljawarneh, Fatin.  2022.  A Secure Smart Meter Application Framework. 2022 International Conference on Engineering & MIS (ICEMIS). :1–4.
We have proposed a new Smart Meter Application (SMA) Framework. This application registers consumers at utility provider (Electricity), takes the meter reading for electricity and makes billing. The proposed application might offer higher level of flexibility and security, time saving and trustworthiness between consumers and authority offices. It’s expected that the application will be developed by Flutter to support Android and iOS Mobile Operating Systems.
2023-01-20
Joshi, Sanskruti, Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Privacy-Preserving Data Falsification Detection in Smart Grids using Elliptic Curve Cryptography and Homomorphic Encryption. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :229—234.
In an advanced metering infrastructure (AMI), the electric utility collects power consumption data from smart meters to improve energy optimization and provides detailed information on power consumption to electric utility customers. However, AMI is vulnerable to data falsification attacks, which organized adversaries can launch. Such attacks can be detected by analyzing customers' fine-grained power consumption data; however, analyzing customers' private data violates the customers' privacy. Although homomorphic encryption-based schemes have been proposed to tackle the problem, the disadvantage is a long execution time. This paper proposes a new privacy-preserving data falsification detection scheme to shorten the execution time. We adopt elliptic curve cryptography (ECC) based on homomorphic encryption (HE) without revealing customer power consumption data. HE is a form of encryption that permits users to perform computations on the encrypted data without decryption. Through ECC, we can achieve light computation. Our experimental evaluation showed that our proposed scheme successfully achieved 18 times faster than the CKKS scheme, a common HE scheme.
Choudhary, Sachin, Kumar, Abhimanyu, Kumar, Krishan.  2022.  An Efficient Key Agreement Protocol for Smart Grid communication. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1—5.
Integration of technology with power grid emerged Smart grid. The advancement of power grid into smart grid faces some security issues like message mod-ification attacks, message injection attacks etc. If these issues are correctly not addressed, then the performance of the smart grid is degraded. Smart grid has bidirectional communication among the smart grid entities. The flow of user energy consumption information between all smart grid entities may lead the user privacy violation. Smart grids have various components but service providers and smart meters are the main components. Smart meters have sensing and communication functionality, while service providers have control and communication functionality. There are many privacy preservation schemes proposed that ensure the cus-tomer's privacy in the smart grid. To preserve the customer's data privacy and communication, authentication and key agreement schemes are required between the smart meter and the service provider. This paper proposes an efficient key agreement protocol to handle several security challenges in smart grid. The proposed protocol is tested against the various security attributes necessary for a key establishment protocol and found safe. Further the performance of the proposed work is compared with several others existing work for smart grid application and it has been observed that the proposed protocol performs significantly better than the existing protocols available in the literature.
Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Look-Up Table based FHE System for Privacy Preserving Anomaly Detection in Smart Grids. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :108—115.
In advanced metering infrastructure (AMI), the customers' power consumption data is considered private but needs to be revealed to data-driven attack detection frameworks. In this paper, we present a system for privacy-preserving anomaly-based data falsification attack detection over fully homomorphic encrypted (FHE) data, which enables computations required for the attack detection over encrypted individual customer smart meter's data. Specifically, we propose a homomorphic look-up table (LUT) based FHE approach that supports privacy preserving anomaly detection between the utility, customer, and multiple partied providing security services. In the LUTs, the data pairs of input and output values for each function required by the anomaly detection framework are stored to enable arbitrary arithmetic calculations over FHE. Furthermore, we adopt a private information retrieval (PIR) approach with FHE to enable approximate search with LUTs, which reduces the execution time of the attack detection service while protecting private information. Besides, we show that by adjusting the significant digits of inputs and outputs in our LUT, we can control the detection accuracy and execution time of the attack detection, even while using FHE. Our experiments confirmed that our proposed method is able to detect the injection of false power consumption in the range of 11–17 secs of execution time, depending on detection accuracy.
Ma, Youjie, Su, Hua, Zhou, Xuesong, Tu, Fuhou.  2022.  Research on Data Security and Privacy Protection of Smart Grid Based on Alliance Chain. 2022 IEEE International Conference on Mechatronics and Automation (ICMA). :157—162.
As a new generation of power grid system, smart grid and smart meter conduct two-way communication to realize the intelligent collection, monitoring and dispatching of user power data, so as to achieve a safer, stable, reliable and efficient power grid environment. With the vigorous development of power grid, there are also some security and privacy problems. This paper uses Paillier homomorphic encryption algorithm and role-based access control strategy to ensure the privacy security in the process of multi-dimensional aggregation, data transmission and sharing of power data. Applying the characteristics of blockchain technology such as decentralization, non tampering and traceability to the smart grid can effectively solve the privacy and security problems of power data transmission and sharing in the smart grid. This paper compares Paillier encryption algorithm with PPAR algorithm and SIAHE algorithm in terms of encryption mechanism, number of aggregators and computational complexity respectively. The results show that Paillier homomorphic encryption algorithm has higher data privacy and security.
Madbhavi, Rahul, Srinivasan, Babji.  2022.  Enhancing Performance of Compressive Sensing-based State Estimators using Dictionary Learning. 2022 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
Smart grids integrate computing and communication infrastructure with conventional power grids to improve situational awareness, control, and safety. Several technologies such as automatic fault detection, automated reconfiguration, and outage management require close network monitoring. Therefore, utilities utilize sensing equipment such as PMUs (phasor measurement units), smart meters, and bellwether meters to obtain grid measurements. However, the expansion in sensing equipment results in an increased strain on existing communication infrastructure. Prior works overcome this problem by exploiting the sparsity of power consumption data in the Haar, Hankel, and Toeplitz transformation bases to achieve sub-Nyquist compression. However, data-driven dictionaries enable superior compression ratios and reconstruction accuracy by learning the sparsifying basis. Therefore, this work proposes using dictionary learning to learn the sparsifying basis of smart meter data. The smart meter data sent to the data centers are compressed using a random projection matrix prior to transmission. These measurements are aggregated to obtain the compressed measurements at the primary nodes. Compressive sensing-based estimators are then utilized to estimate the system states. This approach was validated on the IEEE 33-node distribution system and showed superior reconstruction accuracy over conventional transformation bases and over-complete dictionaries. Voltage magnitude and angle estimation error less than 0.3% mean absolute percentage error and 0.04 degree mean absolute error, respectively, were achieved at compression ratios as high as eight.
Boiarkin, Veniamin, Rajarajan, Muttukrishnan.  2022.  A novel Blockchain-Based Data-Aggregation scheme for Edge-Enabled Microgrid of Prosumers. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :63—68.

The concept of a microgrid has emerged as a promising solution for the management of local groups of electricity consumers and producers. The use of end-users' energy usage data can help in increasing efficient operation of a microgrid. However, existing data-aggregation schemes for a microgrid suffer different cyber attacks and do not provide high level of accuracy. This work aims at designing a privacy-preserving data-aggregation scheme for a microgrid of prosumers that achieves high level of accuracy, thereby benefiting to the management and control of a microgrid. First, a novel smart meter readings data protection mechanism is proposed to ensure privacy of prosumers by hiding the real energy usage data from other parties. Secondly, a blockchain-based data-aggregation scheme is proposed to ensure privacy of the end-users, while achieving high level of accuracy in terms of the aggregated data. The proposed data-aggregation scheme is evaluated using real smart meter readings data from 100 prosumers. The results show that the proposed scheme ensures prosumers' privacy and achieves high level of accuracy, while it is secure against eavesdropping and man-in-the-middle cyber attacks.

Lazaroiu, George Cristian, Kayisli, Korhan, Roscia, Mariacristina, Steriu, Ilinca Andreaa.  2022.  Smart Contracts for Households Managed by Smart Meter Equipped with Blockchain and Chain 2. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :340—345.

Managing electricity effectively also means knowing as accurately as possible when, where and how electricity is used. Detailed metering and timely allocation of consumption can help identify specific areas where energy consumption is excessive and therefore requires action and optimization. All those interested in the measurement process (distributors, sellers, wholesalers, managers, ultimately customers and new prosumer figures - producers / consumers -) have an interest in monitoring and managing energy flows more efficiently, in real time.Smart meter plays a key role in sending data containing consumer measurements to both the producer and the consumer, thanks to chain 2. It allows you to connect consumption and production, during use and the customer’s identity, allowing billing as Time-of-Use or Real-Time Pricing, and through the new two-way channel, this information is also made available to the consumer / prosumer himself, enabling new services such as awareness of energy consumption at the very moment of energy use.This is made possible by latest generation devices that "talk" with the end user, which use chain 2 and the power line for communication.However, the implementation of smart meters and related digital technologies associated with the smart grid raises various concerns, including, privacy. This paper provides a comparative perspective on privacy policies for residential energy customers, moreover, it will be possible to improve security through the blockchain for the introduction of smart contracts.

Alkuwari, Ahmad N., Al-Kuwari, Saif, Qaraqe, Marwa.  2022.  Anomaly Detection in Smart Grids: A Survey From Cybersecurity Perspective. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—7.
Smart grid is the next generation for power generation, consumption and distribution. However, with the introduction of smart communication in such sensitive components, major risks from cybersecurity perspective quickly emerged. This survey reviews and reports on the state-of-the-art techniques for detecting cyber attacks in smart grids, mainly through machine learning techniques.
2022-11-18
Alfassa, Shaik Mirra, Nagasundari, S, Honnavalli, Prasad B.  2021.  Invasion Analysis of Smart Meter In AMI System. 2021 IEEE Mysore Sub Section International Conference (MysuruCon). :831—836.
Conventional systems has to be updated as the technology advances at quick pace. A smart grid is a renovated and digitalized version of a standard electrical infrastructure that allows two-way communication between customers and the utility, which overcomes huge manual hustle. Advanced Metering Infrastructure plays a major role in a smart grid by automatically reporting the power consumption readings to the utility through communication networks. However, there is always a trade-off. Security of AMI communication is a major problem that must be constantly monitored if this technology is to be fully utilized. This paper mainly focuses on developing a virtual setup of fully functional smart meter and a web application for generating electricity bill which allows consumer to obtain demand response, where the data is managed at server side. It also focuses on analyzing the potential security concerns posed by MITM-Arp-spoofing attacks on AMI systems and session hijacking attacks on web interfaces. This work also focusses on mitigating the vulnerabilities of session hijacking on web interface by restricting the cookies so that the attacker is unable to acquire any confidential data.
2022-08-26
Khadarvali, S., Madhusudhan, V., Kiranmayi, R..  2021.  Load Frequency Control of Two Area System with Security Attack and Game Theory Based Defender Action Using ALO Tuned Integral Controller. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). :1—5.

Cyber-attacks in electrical power system causes serious damages causing breakdown of few equipment to shutdown of the complete power system. Game theory is used as a tool to detect the cyber-attack in the power system recently. Interaction between the attackers and the defenders which is the inherent nature of the game theory is exploited to detect the cyber-attack in the power system. This paper implements the cyber-attack detection on a two-area power system controlled using the Load Frequency controller. Ant Lion Optimization is used to tune the integral controller applied in the Load Frequency Controller. Cyber-attacks that include constant injection, bias injection, overcompensation, and negative compensation are tested on the Game theory-based attack detection algorithm proposed. It is considered that the smart meters are attacked with the attacks by manipulating the original data in the power system. MATLAB based implementation is developed and observed that the defender action is satisfactory in the two-area system considered. Tuning of integral controller in the Load Frequency controller in the two-area system is also observed to be effective.

2022-07-29
Baruah, Barnana, Dhal, Subhasish.  2021.  An Authenticated Key Agreement Scheme for Secure Communication in Smart Grid. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :447—455.
Rapid development of wireless technologies has driven the evolution of smart grid application. In smart grid, authentication plays an important role for secure communication between smart meter and service provider. Hence, the design of secure authenticated key agreement schemes has received significant attention from researchers. In these schemes, a trusted third party directly participates in key agreement process. Although, this third party is assumed as trusted, however we cannot reject the possibility that being a third party, it can also be malicious. In the existing works, either the established session key is revealed to the agents of a trusted third party, or a trusted third party agent can impersonate the smart meter and establish a valid session key with the service provider, which is likely to cause security vulnerabilities. Therefore, there is a need to design a secure authentication scheme so that only the deserving entities involved in the communication can establish and know the session key. This paper proposes a new secure authenticated key agreement scheme for smart grid considering the fact that the third party can also be malicious. The security of the proposed scheme has been thoroughly evaluated using an adversary model. Correctness of the scheme has been analyzed using the broadly accepted Burrows-Abadi-Needham (BAN) Logic. In addition, the formal security verification of the proposed scheme has been performed using the widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) simulation tool. Results of this simulation confirm that the proposed scheme is safe. Detailed security analysis shows the robustness of the scheme against various known attacks. Moreover, the comparative performance study of the proposed scheme with other relevant schemes is presented to demonstrate its practicality.
2022-04-26
Wang, Haoxiang, Zhang, Jiasheng, Lu, Chenbei, Wu, Chenye.  2021.  Privacy Preserving in Non-Intrusive Load Monitoring: A Differential Privacy Perspective. 2021 IEEE Power Energy Society General Meeting (PESGM). :01–01.

Smart meter devices enable a better understanding of the demand at the potential risk of private information leakage. One promising solution to mitigating such risk is to inject noises into the meter data to achieve a certain level of differential privacy. In this paper, we cast one-shot non-intrusive load monitoring (NILM) in the compressive sensing framework, and bridge the gap between theoretical accuracy of NILM inference and differential privacy's parameters. We then derive the valid theoretical bounds to offer insights on how the differential privacy parameters affect the NILM performance. Moreover, we generalize our conclusions by proposing the hierarchical framework to solve the multishot NILM problem. Numerical experiments verify our analytical results and offer better physical insights of differential privacy in various practical scenarios. This also demonstrates the significance of our work for the general privacy preserving mechanism design.

2022-04-13
Bernardi, Simona, Javierre, Raúl, Merseguer, José, Requeno, José Ignacio.  2021.  Detectors of Smart Grid Integrity Attacks: an Experimental Assessment. 2021 17th European Dependable Computing Conference (EDCC). :75–82.
Today cyber-attacks to critical infrastructures can perform outages, economical loss, physical damage to people and the environment, among many others. In particular, the smart grid is one of the main targets. In this paper, we develop and evaluate software detectors for integrity attacks to smart meter readings. The detectors rely upon different techniques and models, such as autoregressive models, clustering, and neural networks. Our evaluation considers different “attack scenarios”, then resembling the plethora of attacks found in last years. Starting from previous works in the literature, we carry out a detailed experimentation and analysis, so to identify which “detectors” best fit for each “attack scenario”. Our results contradict some findings of previous works and also offer a light for choosing the techniques that can address best the attacks to smart meters.
2022-03-23
Shukla, Saurabh, Thakur, Subhasis, Breslin, John G..  2021.  Secure Communication in Smart Meters using Elliptic Curve Cryptography and Digital Signature Algorithm. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :261—266.
With the advancement in the growth of Internet-of-Things (IoT), its number of applications has also increased such as in healthcare, smart cities, vehicles, industries, household appliances, and Smart Grids (SG). One of the major applications of IoT is the SG and smart meter which consists of a large number of internet-connected sensors and can communicate bi-directionally in real-time. The SG network involves smart meters, data collectors, generators, and sensors connected with the internet. SG networks involve the generation, distribution, transmission, and consumption of electrical power supplies. It consists of Household Area Network (HAN), and Neighborhood Area Network (NAN) for communication. Smart meters can communicate bidirectionally with consumers and provide real-time information to utility offices. But this communication channel is a wide-open network for data transmission. Therefore, it makes the SG network and smart meter vulnerable to outside hacker and various Cyber-Physical System (CPS) attacks such as False Data Injection (FDI), inserting malicious data, erroneous data, manipulating the sensor reading values. Here cryptography techniques can play a major role along with the private blockchain model for secure data transmission in smart meters. Hence, to overcome these existing issues and challenges in smart meter communication we have proposed a blockchain-based system model for secure communication along with a novel Advanced Elliptic Curve Cryptography Digital Signature (AECCDS) algorithm in Fog Computing (FC) environment. Here FC nodes will work as miners at the edge of smart meters for secure and real-time communication. The algorithm is implemented using iFogSim, Geth version 1.9.25, Ganache, Truffle for compiling smart contracts, Anaconda (Python editor), and ATOM as language editor for the smart contracts.
2022-02-25
Itria, Massimiliano Leone, Schiavone, Enrico, Nostro, Nicola.  2021.  Towards anomaly detection in smart grids by combining Complex Events Processing and SNMP objects. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :212—217.
This paper describes the architecture and the fundamental methodology of an anomaly detector, which by continuously monitoring Simple Network Management Protocol data and by processing it as complex-events, is able to timely recognize patterns of faults and relevant cyber-attacks. This solution has been applied in the context of smart grids, and in particular as part of a security and resilience component of the Information and Communication Technologies (ICT) Gateway, a middleware-based architecture that correlates and fuses measurement data from different sources (e.g., Inverters, Smart Meters) to provide control coordination and to enable grid observability applications. The detector has been evaluated through experiments, where we selected some representative anomalies that can occur on the ICT side of the energy distribution infrastructure: non-malicious faults (indicated by patterns in the system resources usage), as well as effects of typical cyber-attacks directed to the smart grid infrastructure. The results show that the detection is promisingly fast and efficient.
2021-12-02
Gai, Na, Xue, Kaiping, He, Peixuan, Zhu, Bin, Liu, Jianqing, He, Debiao.  2020.  An Efficient Data Aggregation Scheme with Local Differential Privacy in Smart Grid. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :73–80.
Smart grid achieves reliable, efficient and flexible grid data processing by integrating traditional power grid with information and communication technology. The control center can evaluate the supply and demand of the power grid through aggregated data of users, and then dynamically adjust the power supply, price of the power, etc. However, since the grid data collected from users may disclose the user's electricity using habits and daily activities, the privacy concern has become a critical issue. Most of the existing privacy-preserving data collection schemes for smart grid adopt homomorphic encryption or randomization techniques which are either impractical because of the high computation overhead or unrealistic for requiring the trusted third party. In this paper, we propose a privacy-preserving smart grid data aggregation scheme satisfying local differential privacy (LDP) based on randomized response. Our scheme can achieve efficient and practical estimation of the statistics of power supply and demand while preserving any individual participant's privacy. The performance analysis shows that our scheme is efficient in terms of computation and communication overhead.
2021-11-30
Akhras, Raphaelle, El-Hajj, Wassim, Majdalani, Michel, Hajj, Hazem, Jabr, Rabih, Shaban, Khaled.  2020.  Securing Smart Grid Communication Using Ethereum Smart Contracts. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1672–1678.
Smart grids are being continually adopted as a replacement of the traditional power grid systems to ensure safe, efficient, and cost-effective power distribution. The smart grid is a heterogeneous communication network made up of various devices such as smart meters, automation, and emerging technologies interacting with each other. As a result, the smart grid inherits most of the security vulnerabilities of cyber systems, putting the smart grid at risk of cyber-attacks. To secure the communication between smart grid entities, namely the smart meters and the utility, we propose in this paper a communication infrastructure built on top of a blockchain network, specifically Ethereum. All two-way communication between the smart meters and the utility is assumed to be transactions governed by smart contracts. Smart contracts are designed in such a way to ensure that each smart meter is authentic and each smart meter reading is reported securely and privately. We present a simulation of a sample smart grid and report all the costs incurred from building such a grid. The simulations illustrate the feasibility and security of the proposed architecture. They also point to weaknesses that must be addressed, such as scalability and cost.
Dobrea, Marius-Alexandru, Vasluianu, Mihaela, Neculoiu, Giorgian, Bichiu, Stefan.  2020.  Data Security in Smart Grid. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
Looking at the Smart Grid as a Cyber - Physical system of great complexity, the paper synthesizes the main IT security issues that may arise. Security issues are seen from a hybrid point of view, combining theory of information with system theory. Smart Grid has changed dramatically over the past years. With modern technologies, such as Big Data or Internet of Things (IoT), the Smart Grid is evolving into a more interconnected and dynamic power network model.
Marah, Rim, Gabassi, Inssaf El, Larioui, Sanae, Yatimi, Hanane.  2020.  Security of Smart Grid Management of Smart Meter Protection. 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). :1–5.
The need of more secured and environmental energy is becoming a necessity and priority in an environment suffering from serious problems due to technological development. Since the Smart Grid is a promising alternative that supports green energy and enhances a better management of electricity, the security side has became one of the major and critical associated issues in building the communication network in the microgrid.In this paper we will present the Smart Grid Cyber security challenges and propose a distributed algorithm that face one of the biggest problems threatening the smart grid which is fires.
Yang, Haomiao, Liang, Shaopeng, Zhou, Qixian, Li, Hongwei.  2020.  Privacy-Preserving HE-Based Clustering for Load Profiling over Encrypted Smart Meter Data. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Load profiling is to cluster power consumption data to generate load patterns showing typical behaviors of consumers, and thus it has enormous potential applications in smart grid. However, short-interval readings would generate massive smart meter data. Although cloud computing provides an excellent choice to analyze such big data, it also brings significant privacy concerns since the cloud is not fully trustworthy. In this paper, based on a modified vector homomorphic encryption (VHE), we propose a privacy-preserving and outsourced k-means clustering scheme (PPOk M) for secure load profiling over encrypted meter data. In particular, we design a similarity-measuring method that effectively and non-interactively performs encrypted distance metrics. Besides, we present an integrity verification technique to detect the sloppy cloud server, which intends to stop iterations early to save computational cost. In addition, extensive experiments and analysis show that PPOk M achieves high accuracy and performance while preserving convergence and privacy.
Shateri, Mohammadhadi, Messina, Francisco, Piantanida, Pablo, Labeau, Fabrice.  2020.  Privacy-Cost Management in Smart Meters Using Deep Reinforcement Learning. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :929–933.
Smart meters (SMs) play a pivotal rule in the smart grid by being able to report the electricity usage of consumers to the utility provider (UP) almost in real-time. However, this could leak sensitive information about the consumers to the UP or a third-party. Recent works have leveraged the availability of energy storage devices, e.g., a rechargeable battery (RB), in order to provide privacy to the consumers with minimal additional energy cost. In this paper, a privacy-cost management unit (PCMU) is proposed based on a model-free deep reinforcement learning algorithm, called deep double Q-learning (DDQL). Empirical results evaluated on actual SMs data are presented to compare DDQL with the state-of-the-art, i.e., classical Q-learning (CQL). Additionally, the performance of the method is investigated for two concrete cases where attackers aim to infer the actual demand load and the occupancy status of dwellings. Finally, an abstract information-theoretic characterization is provided.
Wagh, Gaurav S., Mishra, Sumita.  2020.  A Cyber-Resilient Privacy Framework for the Smart Grid with Dynamic Billing Capabilities. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.
The desired features for the smart grid include dynamic billing capabilities along with consumer privacy protection. Existing aggregation-based privacy frameworks have limitations such as centralized designs prone to single points of failure and/or a high computational overload on the smart meters due to in-network aggregation or complex algorithmic operations. Additionally, these existing schemes do not consider how dynamic billing can be implemented while consumer privacy is preserved. In this paper, a cyber-resilient framework that enables dynamic billing while focusing on consumer privacy preservation is proposed. The distributed design provides a framework for spatio-temporal aggregation and keeps the process lightweight for the smart meters. The comparative analysis of our proposed work with existing work shows a significant improvement in terms of the spatial aggregation overhead, overhead on smart meters and scalability. The paper also discusses the resilience of our framework against privacy attacks.
2021-10-12
Ackley, Darryl, Yang, Hengzhao.  2020.  Exploration of Smart Grid Device Cybersecurity Vulnerability Using Shodan. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The generation, transmission, distribution, and storage of electric power is becoming increasingly decentralized. Advances in Distributed Energy Resources (DERs) are rapidly changing the nature of the power grid. Moreover, the accommodation of these new technologies by the legacy grid requires that an increasing number of devices be Internet connected so as to allow for sensor and actuator information to be collected, transmitted, and processed. With the wide adoption of the Internet of Things (IoT), the cybersecurity vulnerabilities of smart grid devices that can potentially affect the stability, reliability, and resilience of the power grid need to be carefully examined and addressed. This is especially true in situations in which smart grid devices are deployed with default configurations or without reasonable protections against malicious activities. While much work has been done to characterize the vulnerabilities associated with Supervisory Control and Data Acquisition (SCADA) and Industrial Control System (ICS) devices, this paper demonstrates that similar vulnerabilities associated with the newer class of IoT smart grid devices are becoming a concern. Specifically, this paper first performs an evaluation of such devices using the Shodan platform and text processing techniques to analyze a potential vulnerability involving the lack of password protection. This work further explores several Shodan search terms that can be used to identify additional smart grid components that can be evaluated in terms of cybersecurity vulnerabilities. Finally, this paper presents recommendations for the more secure deployment of such smart grid devices.
2021-06-02
Avula, Ramana R., Oechtering, Tobias J..  2020.  On Design of Optimal Smart Meter Privacy Control Strategy Against Adversarial Map Detection. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5845—5849.
We study the optimal control problem of the maximum a posteriori (MAP) state sequence detection of an adversary using smart meter data. The privacy leakage is measured using the Bayesian risk and the privacy-enhancing control is achieved in real-time using an energy storage system. The control strategy is designed to minimize the expected performance of a non-causal adversary at each time instant. With a discrete-state Markov model, we study two detection problems: when the adversary is unaware or aware of the control. We show that the adversary in the former case can be controlled optimally. In the latter case, where the optimal control problem is shown to be non-convex, we propose an adaptive-grid approximation algorithm to obtain a sub-optimal strategy with reduced complexity. Although this work focuses on privacy in smart meters, it can be generalized to other sensor networks.