Biblio
The use of software to support the information infrastructure that governments, critical infrastructure providers and businesses worldwide rely on for their daily operations and business processes is gradually becoming unavoidable. Commercial off-the shelf software is widely and increasingly used by these organizations to automate processes with information technology. That notwithstanding, cyber-attacks are becoming stealthier and more sophisticated, which has led to a complex and dynamic risk environment for IT-based operations which users are working to better understand and manage. This has made users become increasingly concerned about the integrity, security and reliability of commercial software. To meet up with these concerns and meet customer requirements, vendors have undertaken significant efforts to reduce vulnerabilities, improve resistance to attack and protect the integrity of the products they sell. These efforts are often referred to as “software assurance.” Software assurance is becoming very important for organizations critical to public safety and economic and national security. These users require a high level of confidence that commercial software is as secure as possible, something only achieved when software is created using best practices for secure software development. Therefore, in this paper, we explore the need for information assurance and its importance for both organizations and end users, methodologies and best practices for software security and information assurance, and we also conducted a survey to understand end users’ opinions on the methodologies researched in this paper and their impact.
ISSN: 2154-0373
The design of attacks for cyber physical systems is critical to assess CPS resilience at design time and run-time, and to generate rich datasets from testbeds for research. Attacks against cyber physical systems distinguish themselves from IT attacks in that the main objective is to harm the physical system. Therefore, both cyber and physical system knowledge are needed to design such attacks. The current practice to generate attacks either focuses on the cyber part of the system using IT cyber security existing body of knowledge, or uses heuristics to inject attacks that could potentially harm the physical process. In this paper, we present a systematic approach to automatically generate integrity attacks from the CPS safety and control specifications, without knowledge of the physical system or its dynamics. The generated attacks violate the system operational and safety requirements, hence present a genuine test for system resilience. We present an algorithm to automate the malware payload development. Several examples are given throughout the paper to illustrate the proposed approach.
Industrial IoT (IIoT) is a specialized subset of IoT which involves the interconnection of industrial devices with ubiquitous control and intelligent processing services to improve industrial system's productivity and operational capability. In essence, IIoT adapts a use-case specific architecture based on RFID sense network, BLE sense network or WSN, where heterogeneous industrial IoT devices can collaborate with each other to achieve a common goal. Nonetheless, most of the IIoT deployments are brownfield in nature which involves both new and legacy technologies (SCADA (Supervisory Control and Data Acquisition System)). The merger of these technologies causes high degree of cross-linking and decentralization which ultimately increases the complexity of IIoT systems and introduce new vulnerabilities. Hence, industrial organizations becomes not only vulnerable to conventional SCADA attacks but also to a multitude of IIoT specific threats. However, there is a lack of understanding of these attacks both with respect to the literature and empirical evaluation. As a consequence, it is infeasible for industrial organizations, researchers and developers to analyze attacks and derive a robust security mechanism for IIoT. In this paper, we developed a multi-layer taxonomy of IIoT attacks by considering both brownfield and greenfield architecture of IIoT. The taxonomy consists of 11 layers 94 dimensions and approximately 100 attack techniques which helps to provide a holistic overview of the incident attack pattern, attack characteristics and impact on industrial system. Subsequently, we have exhibited the practical relevance of developed taxonomy by applying it to a real-world use-case. This research will benefit researchers and developers to best utilize developed taxonomy for analyzing attack sequence and to envisage an efficient security platform for futuristic IIoT applications.
In the open network environment, the network offensive information is implanted in big data environment, so it is necessary to carry out accurate location marking of network offensive information, to realize network attack detection, and to implement the process of accurate location marking of network offensive information. Combined with big data analysis method, the location of network attack nodes is realized, but when network attacks cross in series, the performance of attack information tagging is not good. An accurate marking technique for network attack information is proposed based on big data fusion tracking recognition. The adaptive learning model combined with big data is used to mark and sample the network attack information, and the feature analysis model of attack information chain is designed by extracting the association rules. This paper classifies the data types of the network attack nodes, and improves the network attack detection ability by the task scheduling method of the network attack information nodes, and realizes the accurate marking of the network attacking information. Simulation results show that the proposed algorithm can effectively improve the accuracy of marking offensive information in open network environment, the efficiency of attack detection and the ability of intrusion prevention is improved, and it has good application value in the field of network security defense.