Visible to the public Biblio

Filters: Keyword is cache performance  [Clear All Filters]
2020-11-30
Zhou, K., Sun, S., Wang, H., Huang, P., He, X., Lan, R., Li, W., Liu, W., Yang, T..  2019.  Improving Cache Performance for Large-Scale Photo Stores via Heuristic Prefetching Scheme. IEEE Transactions on Parallel and Distributed Systems. 30:2033–2045.
Photo service providers are facing critical challenges of dealing with the huge amount of photo storage, typically in a magnitude of billions of photos, while ensuring national-wide or world-wide satisfactory user experiences. Distributed photo caching architecture is widely deployed to meet high performance expectations, where efficient still mysterious caching policies play essential roles. In this work, we present a comprehensive study on internet-scale photo caching algorithms in the case of QQPhoto from Tencent Inc., the largest social network service company in China. We unveil that even advanced cache algorithms can only perform at a similar level as simple baseline algorithms and there still exists a large performance gap between these cache algorithms and the theoretically optimal algorithm due to the complicated access behaviors in such a large multi-tenant environment. We then expound the reasons behind this phenomenon via extensively investigating the characteristics of QQPhoto workloads. Finally, in order to realistically further improve QQPhoto cache efficiency, we propose to incorporate a prefetcher in the cache stack based on the observed immediacy feature that is unique to the QQPhoto workload. The prefetcher proactively prefetches selected photos into cache before they are requested for the first time to eliminate compulsory misses and promote hit ratios. Our extensive evaluation results show that with appropriate prefetching we improve the cache hit ratio by up to 7.4 percent, while reducing the average access latency by 6.9 percent at a marginal cost of 4.14 percent backend network traffic compared to the original system that performs no prefetching.
2019-01-16
Hasslinger, G., Ntougias, K., Hasslinger, F., Hohlfeld, O..  2018.  Comparing Web Cache Implementations for Fast O(1) Updates Based on LRU, LFU and Score Gated Strategies. 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–7.
To be applicable to high user request workloads, web caching strategies benefit from low implementation and update effort. In this regard, the Least Recently Used (LRU) replacement principle is a simple and widely-used method. Despite its popularity, LRU has deficits in the achieved hit rate performance and cannot consider transport and network optimization criteria for selecting content to be cached. As a result, many alternatives have been proposed in the literature, which improve the cache performance at the cost of higher complexity. In this work, we evaluate the implementation complexity and runtime performance of LRU, Least Frequently Used (LFU), and score based strategies in the class of fast O(1) updates with constant effort per request. We implement Window LFU (W-LFU) within this class and show that O(1) update effort can be achieved. We further compare fast update schemes of Score Gated LRU and new Score Gated Polling (SGP). SGP is simpler than LRU and provides full flexibility for arbitrary score assessment per data object as information basis for performance optimization regarding network cost and quality measures.