Biblio
Opportunistic spectrum access is one of the emerging techniques for maximizing throughput in congested bands and is enabled by predicting idle slots in spectrum. We propose a kernel-based reinforcement learning approach coupled with a novel budget-constrained sparsification technique that efficiently captures the environment to find the best channel access actions. This approach allows learning and planning over the intrinsic state-action space and extends well to large state spaces. We apply our methods to evaluate coexistence of a reinforcement learning-based radio with a multi-channel adversarial radio and a single-channel carrier-sense multiple-access with collision avoidance (CSMA-CA) radio. Numerical experiments show the performance gains over carrier-sense systems.
This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.
Internet of Things is nowadays growing faster than ever before. Operators are planning or already creating dedicated networks for this type of devices. There is a need to create dedicated solutions for this type of network, especially solutions related to information security. In this article we present a mechanism of security-aware routing, which takes into account the evaluation of trust in devices and packet flows. We use trust relationships between flows and network nodes to create secure SDN paths, not ignoring also QoS and energy criteria. The system uses SDN infrastructure, enriched with Cognitive Packet Networks (CPN) mechanisms. Routing decisions are made by Random Neural Networks, trained with data fetched with Cognitive Packets. The proposed network architecture, implementing the security-by-design concept, was designed and is being implemented within the SerIoT project to demonstrate secure networks for the Internet of Things (IoT).
In cognitive radio networks (CRNs), secondary users (SUs) are vulnerable to malicious attacks because an SU node's opportunistic access cannot be protected from adversaries. How to design a channel hopping scheme to protect SU nodes from jamming attacks is thus an important issue in CRNs. Existing anti-jamming channel hopping schemes have some limitations: Some require SU nodes to exchange secrets in advance; some require an SU node to be either a receiver or a sender, and some are not flexible enough. Another issue for existing anti-jamming channel hopping schemes is that they do not consider different nodes may have different traffic loads. In this paper, we propose an anti-jamming channel hopping protocol, Load Awareness Anti-jamming channel hopping (LAA) scheme. Nodes running LAA are able to change their channel hopping sequences based on their sending and receiving traffic. Simulation results verify that LAA outperforms existing anti-jamming schemes.
With the improvement in technology and with the increase in the use of wireless devices there is deficiency of radio spectrum. Cognitive radio is considered as the solution for this problem. Cognitive radio is capable to detect which communication channels are in use and which are free, and immediately move into free channels while avoiding the used ones. This increases the usage of radio frequency spectrum. Any wireless system is prone to attack. Likewise, the main two attacks in the physical layer of cognitive radio are Primary User Emulation Attack (PUEA) and replay attack. This paper focusses on mitigating these two attacks with the aid of authentication tag and distance calculation. Mitigation of these attacks results in error free transmission which in turn fallouts in efficient dynamic spectrum access.
The primary objective of Cognitive Radio Networks (CRN) is to opportunistically utilize the available spectrum for efficient and seamless communication. Like all other radio networks, Cognitive Radio Network also suffers from a number of security attacks and Primary User Emulation Attack (PUEA) is vital among them. Primary user Emulation Attack not only degrades the performance of the Cognitive Radio Networks but also dissolve the objective of Cognitive Radio Network. Efficient and secure authentication of Primary Users (PU) is an only solution to mitigate Primary User Emulation Attack but most of the mechanisms designed for this are either complex or make changes to the spectrum. Here, we proposed a mechanism to authenticate Primary Users in Cognitive Radio Network which is neither complex nor make any changes to spectrum. The proposed mechanism is secure and also has improved the performance of the Cognitive Radio Network substantially.
In this article, we study the transmission secrecy performance of primary user in overlay cognitive wireless networks, in which an untrusted energy-limited secondary cooperative user assists the primary transmission to exchange for the spectrum resource. In the network, the information can be simultaneously transmitted through the direct and relay links. For the enhancement of primary transmission security, a maximum ratio combining (MRC) scheme is utilized by the receiver to exploit the two copies of source information. For the security analysis, we firstly derive the tight lower bound expression for secrecy outage probability (SOP). Then, three asymptotic expressions for SOP are also expressed to further analyze the impacts of the transmit power and the location of secondary cooperative node on the primary user information security. The findings show that the primary user information secrecy performance enhances with the improvement of transmit power. Moreover, the smaller the distance between the secondary node and the destination, the better the primary secrecy performance.
Software-defined wireless sensor cognitive radio network is one of the emerging technologies which is simple, agile, and flexible. The sensor network comprises of a sink node with high processing power. The sensed data is transferred to the sink node in a hop-by-hop basis by sensor nodes. The network is programmable, automated, agile, and flexible. The sensor nodes are equipped with cognitive radios, which sense available spectrum bands and transmit sensed data on available bands, which improves spectrum utilization. Unfortunately, the Software-defined wireless sensor cognitive radio network is prone to security issues. The sinkhole attack is the most common attack which can also be used to launch other attacks. We propose and evaluate the performance of Hop Count-Based Sinkhole Attack detection Algorithm (HCOBASAA) using probability of detection, probability of false negative, and probability of false positive as the performance metrics. On average HCOBASAA managed to yield 100%, 75%, and 70% probability of detection.
Primary user emulation (PUE) attack causes security issues in a cognitive radio network (CRN) while sensing the unused spectrum. In PUE attack, malicious users transmit an emulated primary signal in spectrum sensing interval to secondary users (SUs) to forestall them from accessing the primary user (PU) spectrum bands. In the present paper, the defense against such attack by Neyman-Pearson criterion is shown in terms of total error probability. Impact of several parameters such as attacker strength, attacker's presence probability, and signal-to-noise ratio on SU is shown. Result shows proposed method protect the harmful effects of PUE attack in spectrum sensing.
With the rapid proliferation of mobile users, the spectrum scarcity has become one of the issues that have to be addressed. Cognitive Radio technology addresses this problem by allowing an opportunistic use of the spectrum bands. In cognitive radio networks, unlicensed users can use licensed channels without causing harmful interference to licensed users. However, cognitive radio networks can be subject to different security threats which can cause severe performance degradation. One of the main attacks on these networks is the primary user emulation in which a malicious node emulates the characteristics of the primary user signals. In this paper, we propose a detection technique of this attack based on the RSS-based localization with the maximum likelihood estimation. The simulation results show that the proposed technique outperforms the RSS-based localization method in detecting the primary user emulation attacker.