A Flexible Anti-Jamming Channel Hopping for Cognitive Radio Networks
Title | A Flexible Anti-Jamming Channel Hopping for Cognitive Radio Networks |
Publication Type | Conference Paper |
Year of Publication | 2018 |
Authors | Chao, Chih-Min, Lee, Wei-Che, Wang, Cong-Xiang, Huang, Shin-Chung, Yang, Yu-Chich |
Conference Name | 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW) |
Keywords | anti-jamming channel hopping protocol, Anti-jamming strategy, channel hopping sequences, Cognitive radio, cognitive radio networks, Cognitive radio networks (CRNs), Cognitive Radio Security, Computer science, CRN, Extended Langford pairing (ELP), flexible anti-jamming channel hopping, frequency hop communication, jamming, LAA scheme, load awareness anti-jamming channel hopping scheme, Load modeling, Oceans, Protocols, pubcrawl, resilience, Resiliency, SU node, telecommunication security, Throughput, Topology, traffic load, wireless channels |
Abstract | In cognitive radio networks (CRNs), secondary users (SUs) are vulnerable to malicious attacks because an SU node's opportunistic access cannot be protected from adversaries. How to design a channel hopping scheme to protect SU nodes from jamming attacks is thus an important issue in CRNs. Existing anti-jamming channel hopping schemes have some limitations: Some require SU nodes to exchange secrets in advance; some require an SU node to be either a receiver or a sender, and some are not flexible enough. Another issue for existing anti-jamming channel hopping schemes is that they do not consider different nodes may have different traffic loads. In this paper, we propose an anti-jamming channel hopping protocol, Load Awareness Anti-jamming channel hopping (LAA) scheme. Nodes running LAA are able to change their channel hopping sequences based on their sending and receiving traffic. Simulation results verify that LAA outperforms existing anti-jamming schemes. |
URL | https://ieeexplore.ieee.org/document/8590961 |
DOI | 10.1109/CANDARW.2018.00107 |
Citation Key | chao_flexible_2018 |
- LAA scheme
- wireless channels
- traffic load
- Topology
- Throughput
- telecommunication security
- SU node
- Resiliency
- resilience
- pubcrawl
- Protocols
- Oceans
- Load modeling
- load awareness anti-jamming channel hopping scheme
- anti-jamming channel hopping protocol
- Jamming
- frequency hop communication
- flexible anti-jamming channel hopping
- Extended Langford pairing (ELP)
- CRN
- computer science
- Cognitive Radio Security
- Cognitive radio networks (CRNs)
- cognitive radio networks
- cognitive radio
- channel hopping sequences
- Anti-jamming strategy