R, Sowmiya, G, Sivakamasundari, V, Archana.
2022.
Facial Emotion Recognition using Deep Learning Approach. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1064—1069.
Human facial emotion recognition pays a variety of applications in society. The basic idea of Facial Emotion Recognition is to map the different facial emotions to a variety of emotional states. Conventional Facial Emotion Recognition consists of two processes: extracting the features and feature selection. Nowadays, in deep learning algorithms, Convolutional Neural Networks are primarily used in Facial Emotion Recognition because of their hidden feature extraction from the images. Usually, the standard Convolutional Neural Network has simple learning algorithms with finite feature extraction layers for extracting information. The drawback of the earlier approach was that they validated only the frontal view of the photos even though the image was obtained from different angles. This research work uses a deep Convolutional Neural Network along with a DenseNet-169 as a backbone network for recognizing facial emotions. The emotion Recognition dataset was used to recognize the emotions with an accuracy of 96%.
Sivasangari, A., Gomathi, R. M., Anandhi, T., Roobini, Roobini, Ajitha, P..
2022.
Facial Recognition System using Decision Tree Algorithm. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1542—1546.
Face recognition technology is widely employed in a variety of applications, including public security, criminal identification, multimedia data management, and so on. Because of its importance for practical applications and theoretical issues, the facial recognition system has received a lot of attention. Furthermore, numerous strategies have been offered, each of which has shown to be a significant benefit in the field of facial and pattern recognition systems. Face recognition still faces substantial hurdles in unrestricted situations, despite these advancements. Deep learning techniques for facial recognition are presented in this paper for accurate detection and identification of facial images. The primary goal of facial recognition is to recognize and validate facial features. The database consists of 500 color images of people that have been pre-processed and features extracted using Linear Discriminant Analysis. These features are split into 70 percent for training and 30 percent for testing of decision tree classifiers for the computation of face recognition system performance.
Mai, Juanyun, Wang, Minghao, Zheng, Jiayin, Shao, Yanbo, Diao, Zhaoqi, Fu, Xinliang, Chen, Yulong, Xiao, Jianyu, You, Jian, Yin, Airu et al..
2022.
MHSnet: Multi-head and Spatial Attention Network with False-Positive Reduction for Lung Nodule Detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :1108—1114.
Mortality from lung cancer has ranked high among cancers for many years. Early detection of lung cancer is critical for disease prevention, cure, and mortality rate reduction. Many existing detection methods on lung nodules can achieve high sensitivity but meanwhile introduce an excessive number of false-positive proposals, which is clinically unpractical. In this paper, we propose the multi-head detection and spatial attention network, shortly MHSnet, to address this crucial false-positive issue. Specifically, we first introduce multi-head detectors and skip connections to capture multi-scale features so as to customize for the variety of nodules in sizes, shapes, and types. Then, inspired by how experienced clinicians screen CT images, we implemented a spatial attention module to enable the network to focus on different regions, which can successfully distinguish nodules from noisy tissues. Finally, we designed a lightweight but effective false-positive reduction module to cut down the number of false-positive proposals, without any constraints on the front network. Compared with the state-of-the-art models, our extensive experimental results show the superiority of this MHSnet not only in the average FROC but also in the false discovery rate (2.64% improvement for the average FROC, 6.39% decrease for the false discovery rate). The false-positive reduction module takes a further step to decrease the false discovery rate by 14.29%, indicating its very promising utility of reducing distracted proposals for the downstream tasks relied on detection results.
Yu, Jinhe, Liu, Wei, Li, Yue, Zhang, Bo, Yao, Wenjian.
2022.
Anomaly Detection of Power Big Data Based on Improved Support Vector Machine. 2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST). :102—105.
To reduce the false negative rate in power data anomaly detection, enhance the overall detection accuracy and reliability, and create a more stable data detection environment, this paper designs a power big data anomaly detection method based on improved support vector machine technology. The abnormal features are extracted in advance, combined with the changes of power data, the multi-target anomaly detection nodes are laid, and on this basis, the improved support vector machine anomaly detection model is constructed. The anomaly detection is realized by combining the normalization processing of the equivalent vector. The final test results show that compared with the traditional clustering algorithm big data anomaly detection test group and the traditional multi-domain feature extraction big data anomaly detection test group, the final false negative rate of the improved support vector machine big data exception detection test group designed in this paper is only 2.04, which shows that the effect of the anomaly detection method is better. It is more accurate and reliable for testing in a complex power environment and has practical application value.
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.
2022.
Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.