C, Chethana, Pareek, Piyush Kumar, Costa de Albuquerque, Victor Hugo, Khanna, Ashish, Gupta, Deepak.
2022.
Deep Learning Technique Based Intrusion Detection in Cyber-Security Networks. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–7.
As a result of the inherent weaknesses of the wireless medium, ad hoc networks are susceptible to a broad variety of threats and assaults. As a direct consequence of this, intrusion detection, as well as security, privacy, and authentication in ad-hoc networks, have developed into a primary focus of current study. This body of research aims to identify the dangers posed by a variety of assaults that are often seen in wireless ad-hoc networks and provide strategies to counteract those dangers. The Black hole assault, Wormhole attack, Selective Forwarding attack, Sybil attack, and Denial-of-Service attack are the specific topics covered in this thesis. In this paper, we describe a trust-based safe routing protocol with the goal of mitigating the interference of black hole nodes in the course of routing in mobile ad-hoc networks. The overall performance of the network is negatively impacted when there are black hole nodes in the route that routing takes. As a result, we have developed a routing protocol that reduces the likelihood that packets would be lost as a result of black hole nodes. This routing system has been subjected to experimental testing in order to guarantee that the most secure path will be selected for the delivery of packets between a source and a destination. The invasion of wormholes into a wireless network results in the segmentation of the network as well as a disorder in the routing. As a result, we provide an effective approach for locating wormholes by using ordinal multi-dimensional scaling and round trip duration in wireless ad hoc networks with either sparse or dense topologies. Wormholes that are linked by both short route and long path wormhole linkages may be found using the approach that was given. In order to guarantee that this ad hoc network does not include any wormholes that go unnoticed, this method is subjected to experimental testing. In order to fight against selective forwarding attacks in wireless ad-hoc networks, we have developed three different techniques. The first method is an incentive-based algorithm that makes use of a reward-punishment system to drive cooperation among three nodes for the purpose of vi forwarding messages in crowded ad-hoc networks. A unique adversarial model has been developed by our team, and inside it, three distinct types of nodes and the activities they participate in are specified. We have shown that the suggested strategy that is based on incentives prohibits nodes from adopting an individualistic behaviour, which ensures collaboration in the process of packet forwarding. To guarantee that intermediate nodes in resource-constrained ad-hoc networks accurately convey packets, the second approach proposes a game theoretic model that uses non-cooperative game theory. This model is based on the idea that game theory may be used. This game reaches a condition of desired equilibrium, which assures that cooperation in multi-hop communication is physically possible, and it is this state that is discovered. In the third algorithm, we present a detection approach that locates malicious nodes in multihop hierarchical ad-hoc networks by employing binary search and control packets. We have shown that the cluster head is capable of accurately identifying the malicious node by analysing the sequences of packets that are dropped along the path leading from a source node to the cluster head. A lightweight symmetric encryption technique that uses Binary Playfair is presented here as a means of safeguarding the transport of data. We demonstrate via experimentation that the suggested encryption method is efficient with regard to the amount of energy used, the amount of time required for encryption, and the memory overhead. This lightweight encryption technique is used in clustered wireless ad-hoc networks to reduce the likelihood of a sybil attack occurring in such networks
Chen, Ye, Lai, Yingxu, Zhang, Zhaoyi, Li, Hanmei, Wang, Yuhang.
2022.
Malicious attack detection based on traffic-flow information fusion. 2022 IFIP Networking Conference (IFIP Networking). :1–9.
While vehicle-to-everything communication technology enables information sharing and cooperative control for vehicles, it also poses a significant threat to the vehicles' driving security owing to cyber-attacks. In particular, Sybil malicious attacks hidden in the vehicle broadcast information flow are challenging to detect, thereby becoming an urgent issue requiring attention. Several researchers have considered this problem and proposed different detection schemes. However, the detection performance of existing schemes based on plausibility checks and neighboring observers is affected by the traffic and attacker densities. In this study, we propose a malicious attack detection scheme based on traffic-flow information fusion, which enables the detection of Sybil attacks without neighboring observer nodes. Our solution is based on the basic safety message, which is broadcast by vehicles periodically. It first constructs the basic features of traffic flow to reflect the traffic state, subsequently fuses it with the road detector information to add the road fusion features, and then classifies them using machine learning algorithms to identify malicious attacks. The experimental results demonstrate that our scheme achieves the detection of Sybil attacks with an accuracy greater than 90 % at different traffic and attacker densities. Our solutions provide security for achieving a usable vehicle communication network.
Tuba, Eva, Alihodzic, Adis, Tuba, Una, Capor Hrosik, Romana, Tuba, Milan.
2022.
Swarm Intelligence Approach for Feature Selection Problem. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Classification problems have been part of numerous real-life applications in fields of security, medicine, agriculture, and more. Due to the wide range of applications, there is a constant need for more accurate and efficient methods. Besides more efficient and better classification algorithms, the optimal feature set is a significant factor for better classification accuracy. In general, more features can better describe instances, but besides showing differences between instances of different classes, it can also capture many similarities that lead to wrong classification. Determining the optimal feature set can be considered a hard optimization problem for which different metaheuristics, like swarm intelligence algorithms can be used. In this paper, we propose an adaptation of hybridized swarm intelligence (SI) algorithm for feature selection problem. To test the quality of the proposed method, classification was done by k-means algorithm and it was tested on 17 benchmark datasets from the UCI repository. The results are compared to similar approaches from the literature where SI algorithms were used for feature selection, which proves the quality of the proposed hybridized SI method. The proposed method achieved better classification accuracy for 16 datasets. Higher classification accuracy was achieved while simultaneously reducing the number of used features.
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.
2022.
Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.