Ding, Xiong, Liu, Baoxu, Jiang, Zhengwei, Wang, Qiuyun, Xin, Liling.
2021.
Spear Phishing Emails Detection Based on Machine Learning. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :354—359.
Spear phishing emails target to specific individual or organization, they are more elaborated, targeted, and harmful than phishing emails. The attackers usually harvest information about the recipient in any available ways, then create a carefully camouflaged email and lure the recipient to perform dangerous actions. In this paper we present a new effective approach to detect spear phishing emails based on machine learning. Firstly we extracted 21 Stylometric features from email, 3 forwarding features from Email Forwarding Relationship Graph Database(EFRGD), and 3 reputation features from two third-party threat intelligence platforms, Virus Total(VT) and Phish Tank(PT). Then we made an improvement on Synthetic Minority Oversampling Technique(SMOTE) algorithm named KM-SMOTE to reduce the impact of unbalanced data. Finally we applied 4 machine learning algorithms to distinguish spear phishing emails from non-spear phishing emails. Our dataset consists of 417 spear phishing emails and 13916 non-spear phishing emails. We were able to achieve a maximum recall of 95.56%, precision of 98.85% and 97.16% of F1-score with the help of forwarding features, reputation features and KM-SMOTE algorithm.
BOUIJIJ, Habiba, BERQIA, Amine.
2021.
Machine Learning Algorithms Evaluation for Phishing URLs Classification. 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT). :01—05.
Phishing URL is a type of cyberattack, based on falsified URLs. The number of phishing URL attacks continues to increase despite cybersecurity efforts. According to the Anti-Phishing Working Group (APWG), the number of phishing websites observed in 2020 is 1 520 832, doubling over the course of a year. Various algorithms, techniques and methods can be used to build models for phishing URL detection and classification. From our reading, we observed that Machine Learning (ML) is one of the recent approaches used to detect and classify phishing URL in an efficient and proactive way. In this paper, we evaluate eleven of the most adopted ML algorithms such as Decision Tree (DT), Nearest Neighbours (KNN), Gradient Boosting (GB), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), Neural Network (NN), Ex-tra\_Tree (ET), Ada\_Boost (AB) and Bagging (B). To do that, we compute detection accuracy metric for each algorithm and we use lexical analysis to extract the URL features.
Faris, Humam, Yazid, Setiadi.
2021.
Phishing Web Page Detection Methods: URL and HTML Features Detection. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :167—171.
Phishing is a type of fraud on the Internet in the form of fake web pages that mimic the original web pages to trick users into sending sensitive information to phisher. The statistics presented by APWG and Phistank show that the number of phishing websites from 2015 to 2020 tends to increase continuously. To overcome this problem, several studies have been carried out including detecting phishing web pages using various features of web pages with various methods. Unfortunately, the use of several methods is not really effective because the design and evaluation are only too focused on the achievement of detection accuracy in research, but evaluation does not represent application in the real world. Whereas a security detection device should require effectiveness, good performance, and deployable. In this study the authors evaluated several methods and proposed rules-based applications that can detect phishing more efficiently.
Li, Chunzhi.
2021.
A Phishing Detection Method Based on Data Mining. 2021 3rd International Conference on Applied Machine Learning (ICAML). :202—205.
Data mining technology is a very important technology in the current era of data explosion. With the informationization of society and the transparency and openness of information, network security issues have become the focus of concern of people all over the world. This paper wants to compare the accuracy of multiple machine learning methods and two deep learning frameworks when using lexical features to detect and classify malicious URLs. As a result, this paper shows that the Random Forest, which is an ensemble learning method for classification, is superior to 8 other machine learning methods in this paper. Furthermore, the Random Forest is even superior to some popular deep neural network models produced by famous frameworks such as TensorFlow and PyTorch when using lexical features to detect and classify malicious URLs.