Visible to the public Biblio

Filters: Keyword is cloud forensics  [Clear All Filters]
2022-09-30
Williams, Joseph, MacDermott, Áine, Stamp, Kellyann, Iqbal, Farkhund.  2021.  Forensic Analysis of Fitbit Versa: Android vs iOS. 2021 IEEE Security and Privacy Workshops (SPW). :318–326.
Fitbit Versa is the most popular of its predecessors and successors in the Fitbit faction. Increasingly data stored on these smart fitness devices, their linked applications and cloud datacenters are being used for criminal convictions. There is limited research for investigators on wearable devices and specifically exploring evidence identification and methods of extraction. In this paper we present our analysis of Fitbit Versa using Cellebrite UFED and MSAB XRY. We present a clear scope for investigation and data significance based on the findings from our experiments. The data recovery will include logical and physical extractions using devices running Android 9 and iOS 12, comparing between Cellebrite and XRY capabilities. This paper discusses databases and datatypes that can be recovered using different extraction and analysis techniques, providing a robust outlook of data availability. We also discuss the accuracy of recorded data compared to planned test instances, verifying the accuracy of individual data types. The verifiable accuracy of some datatypes could prove useful if such data was required during the evidentiary processes of a forensic investigation.
2022-06-06
Tiwari, Asheesh, Mehrotra, Vibhu, Goel, Shubh, Naman, Kumar, Maurya, Shashank, Agarwal, Ritik.  2021.  Developing Trends and Challenges of Digital Forensics. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1–5.
Digital forensics is concerned with identifying, reporting and responding to security breaches. It is about how to acquire, analyze and report digital evidence and using the technical skills, discovering the traces of Cyber Crime. The field of digital forensics is in high demand due to the constant threats of data breaches and information hacks. Digital Forensics is utilized in the identification and elimination of crimes in any controversy where evidence is preserved in online space. This is the use of specialized techniques for retrieval, authentication and electronic data analysis. Computer forensics deals with the identification, preservation, analysis, documentation and presentation of digital evidence. The paper has analyzed the present-day trends that includes IoT forensics, cloud forensics, network forensics and social media forensics. Recent researches have shown a wide range of threats and cyber-attacks, which requires forensic investigators and forensics scientists to simplify the digital world. Hence, all our research gives a clear view of digital forensics which could be of a great help in forensic investigation. In this research paper we have discussed about the need and way to preserve the digital evidence, so that it is not compromised at any point in time and an unalter evidence can be presented before the court of law.
Silvarajoo, Vimal Raj, Yun Lim, Shu, Daud, Paridah.  2021.  Digital Evidence Case Management Tool for Collaborative Digital Forensics Investigation. 2021 3rd International Cyber Resilience Conference (CRC). :1–4.
Digital forensics investigation process begins with the acquisition, investigation until the presentation of investigation findings. Investigators are required to manage bits and pieces of digital evidence in the cloud and to correlate with evidence found in physical machines and network. The process could be made easy with a proper case management tool that is hosted in the web. The challenge of maintaining chain of custody, determining access to evidence, assignment of forensics investigator could be overcome when digital evidence is fully integrated in a single platform. Our proposed case management tool streamlines information gathering and integrates information on different platforms, shares information, tracks cases, and uploads data directly into a database. In addition, the case management tool facilitates the collaboration of investigators through sharing of forensics findings. These features allow case owner or administrator to track and monitor investigation progress in a forensically sound manner.
2021-02-23
Patil, A., Jha, A., Mulla, M. M., Narayan, D. G., Kengond, S..  2020.  Data Provenance Assurance for Cloud Storage Using Blockchain. 2020 International Conference on Advances in Computing, Communication Materials (ICACCM). :443—448.

Cloud forensics investigates the crime committed over cloud infrastructures like SLA-violations and storage privacy. Cloud storage forensics is the process of recording the history of the creation and operations performed on a cloud data object and investing it. Secure data provenance in the Cloud is crucial for data accountability, forensics, and privacy. Towards this, we present a Cloud-based data provenance framework using Blockchain, which traces data record operations and generates provenance data. Initially, we design a dropbox like application using AWS S3 storage. The application creates a cloud storage application for the students and faculty of the university, thereby making the storage and sharing of work and resources efficient. Later, we design a data provenance mechanism for confidential files of users using Ethereum blockchain. We also evaluate the proposed system using performance parameters like query and transaction latency by varying the load and number of nodes of the blockchain network.

2019-03-22
Ali, Syed Ahmed, Memon, Shahzad, Sahito, Farhan.  2018.  Challenges and Solutions in Cloud Forensics. Proceedings of the 2018 2Nd International Conference on Cloud and Big Data Computing. :6-10.

Cloud computing is cutting-edge platform in this information age, where organizations are shifting their business due to its elasticity, ubiquity, cost-effectiveness. Unfortunately the cyber criminals has used these characteristics for the criminal activities and victimizing multiple users at the same time, by their single exploitation which was impossible in before. Cloud forensics is a special branch of digital forensics, which aims to find the evidences of the exploitation in order to present these evidences in the court of law and bring the culprit to accountability. Collection of evidences in the cloud is not as simple as the traditional digital forensics because of its complex distributed architecture which is scattered globally. In this paper, various issues and challenges in the field of cloud forensics research and their proposed solutions have been critically reviewed, summarized and presented.

2019-01-31
McCulley, Shane, Roussev, Vassil.  2018.  Latent Typing Biometrics in Online Collaboration Services. Proceedings of the 34th Annual Computer Security Applications Conference. :66–76.

The use of typing biometrics—the characteristic typing patterns of individual keyboard users—has been studied extensively in the context of enhancing multi-factor authentication services. The key starting point for such work has been the collection of high-fidelity local timing data, and the key (implicit) security assumption has been that such biometrics could not be obtained by other means. We show that the latter assumption to be false, and that it is entirely feasible to obtain useful typing biometric signatures from third-party timing logs. Specifically, we show that the logs produced by realtime collaboration services during their normal operation are of sufficient fidelity to successfully impersonate a user using remote data only. Since the logs are routinely shared as a byproduct of the services' operation, this creates an entirely new avenue of attack that few users would be aware of. As a proof of concept, we construct successful biometric attacks using only the log-based structure (complete editing history) of a shared Google Docs, or Zoho Writer, document which is readily available to all contributing parties. Using the largest available public data set of typing biometrics, we are able to create successful forgeries 100% of the time against a commercial biometric service. Our results suggest that typing biometrics are not robust against practical forgeries, and should not be given the same weight as other authentication factors. Another important implication is that the routine collection of detailed timing logs by various online services also inherently (and implicitly) contains biometrics. This not only raises obvious privacy concerns, but may also undermine the effectiveness of network anonymization solutions, such as ToR, when used with existing services.