Visible to the public Biblio

Filters: Keyword is WSN  [Clear All Filters]
2018-03-19
Alzubaidi, M., Anbar, M., Al-Saleem, S., Al-Sarawi, S., Alieyan, K..  2017.  Review on Mechanisms for Detecting Sinkhole Attacks on RPLs. 2017 8th International Conference on Information Technology (ICIT). :369–374.

Internet Protocol version 6 (IPv6) over Low power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks (WSNs) due to its ability to transmit IPv6 packet with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by its routing protocol for low-power and lossy network (RPL). RPL components include WSN nodes that have constrained resources. Therefore, the exposure of RPL to various attacks may lead to network damage. A sinkhole attack is a routing attack that could affect the network topology. This paper aims to investigate the existing detection mechanisms used in detecting sinkhole attack on RPL-based networks. This work categorizes and presents each mechanism according to certain aspects. Then, their advantages and drawbacks with regard to resource consumption and false positive rate are discussed and compared.

2018-03-05
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.
2018-02-28
Alzubaidi, Mahmood, Anbar, Mohammed, Hanshi, Sabri M..  2017.  Neighbor-Passive Monitoring Technique for Detecting Sinkhole Attacks in RPL Networks. Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence. :173–182.
Internet Protocol version 6 (IPv6) over Low-power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks due to its capability to transmit IPv6 packets with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by the Routing Protocol for Low-power and Lossy Networks (RPL). 6LoWPAN, with its routing protocol (RPL), usually uses nodes that have constrained resources (memory, power, and processor). In addition, RPL messages are exchanged among network nodes without any message authentication mechanism, thereby exposing the RPL to various attacks that may lead to network disruptions. A sinkhole attack utilizes the vulnerabilities in an RPL and attracts considerable traffic by advertising falsified data that change the routing preference for other nodes. This paper proposes the neighbor-passive monitoring technique (NPMT) for detecting sinkhole attacks in RPL-based networks. The proposed technique is evaluated using the COOJA simulator in terms of power consumption and detection accuracy. Moreover, NPMT is compared with popular detection mechanisms.
2017-12-20
Salleh, A., Mamat, K., Darus, M. Y..  2017.  Integration of wireless sensor network and Web of Things: Security perspective. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). :138–143.
Wireless Sensor Network (WSN) are spread everywhere throughout the world and are ordinarily used to gather physical data from the encompassing scene. WSN play a focal part in the Internet of Things (IoT) vision. WSN is rising as a noticeable component in the middleware connecting together the Internet of Things (IoT) and the Web of Things (WoT). But the integration of WSN to WoT brings new challenges that cannot be solved in a satisfactory way with traditional layer of security. This paper examined the security issue of integration between WSN and WoT, aiming to shed light on how the WSN and WoT security issue are understood and applied, both in academia and industries. This paper introduces security perfective of integration WSN to WoT which offers capabilities to identify and connect worldwide physical objects into a unified system. As a part of the integration, serious concerns are raised over access of personal information pertaining to device (smart thing) and individual privacy. The motivation of this paper is to summarizes the security threats of the integration and suggestion to mitigate the threat.
Pritchard, S. W., Hancke, G. P., Abu-Mahfouz, A. M..  2017.  Security in software-defined wireless sensor networks: Threats, challenges and potential solutions. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). :168–173.
A Software-Defined Wireless Sensor Network (SD-WSN) is a recently developed model which is expected to play a large role not only in the development of the Internet of Things (IoT) paradigm but also as a platform for other applications such as smart water management. This model makes use of a Software-Defined Networking (SDN) approach to manage a Wireless Sensor Network (WSN) in order to solve most of the inherent issues surrounding WSNs. One of the most important aspects of any network, is security. This is an area that has received little attention within the development of SDWSNs, as most research addresses security concerns within SDN and WSNs independently. There is a need for research into the security of SDWSN. Some concepts from both SDN and WSN security can be adjusted to suit the SDWSN model while others cannot. Further research is needed into consolidating SDN and WSN security measures to consider security in SDWSN. Threats, challenges and potential solutions to securing SDWSN are presented by considering both the WSN and SDN paradigms.
2017-11-20
Li, Guyue, Hu, Aiqun.  2016.  Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. 2016 2nd IEEE International Conference on Computer and Communications (ICCC). :2246–2250.

This paper considers the physical layer security for the cluster-based cooperative wireless sensor networks (WSNs), where each node is equipped with a single antenna and sensor nodes cooperate at each cluster of the network to form a virtual multi-input multi-output (MIMO) communication architecture. We propose a joint cooperative beamforming and jamming scheme to enhance the security of the WSNs where a part of sensor nodes in Alice's cluster are deployed to transmit beamforming signals to Bob while a part of sensor nodes in Bob's cluster are utilized to jam Eve with artificial noise. The optimization of beamforming and jamming vectors to minimize total energy consumption satisfying the quality-of-service (QoS) constraints is a NP-hard problem. Fortunately, through reformulation, the problem is proved to be a quadratically constrained quadratic problem (QCQP) which can be solved by solving constraint integer programs (SCIP) algorithm. Finally, we give the simulation results of our proposed scheme.

2017-10-03
Enguehard, Marcel, Droms, Ralph, Rossi, Dario.  2016.  On the Cost of Secure Association of Information Centric Things. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :207–208.

Information Centric Networking (ICN) paradigms nicely fit the world of wireless sensors, whose devices have tight constraints. In this poster, we compare two alternative designs for secure association of new IoT devices in existing ICN deployments, which are based on asymmetric and symmetric cryptography respectively. While the security properties of both approaches are equivalent, an interesting trade-off arises between properties of the protocol vs properties of its implementation in current IoT boards. Indeed, while the asymmetric-keys based approach incurs a lower traffic overhead (of about 30%), we find that its implementation is significantly more energy- and time-consuming due to the cost of cryptographic operations (it requires up to 41x more energy and 8x more time).

2017-09-19
Municio, Esteban, Latré, Steven.  2016.  Decentralized Broadcast-based Scheduling for Dense Multi-hop TSCH Networks. Proceedings of the Workshop on Mobility in the Evolving Internet Architecture. :19–24.

Wireless Sensor Networks (WSNs) are becoming more and more popular to support a wide range of Internet of Things (IoT) applications. Time-Slotted Channel Hopping (TSCH) is a technique to enable ultra reliable and ultra low-power wireless multi-hop networks. TSCH consist of a channel hopping scheme for sending link-layer frames in different time slots and frequencies in order to efficiently combat external interference and multi-path fading. The keystone of TSCH is the scheduling algorithm, which determines for every node at which opportunity (a combination of time slots and channels) it is allowed to send. However, current scheduling algorithms are not suited for dense deployments and have important scalability limitations. In this paper, we investigate TSCH's scheduling performance in dense deployments and show how the scheduling can be improved for such environments. We performed an extensive analysis of the scalability for different scheduling approaches showing the performance drops as the number of nodes increases. Moreover, we propose a novel textlessutextgreaterDetextless/utextgreatercentralized textlessutextgreaterBrtextless/utextgreateroadcast-based textlessutextgreaterStextless/utextgreatercheduling algorithm called DeBraS, based on selective broadcasting to inform nodes about each other's schedule. Through extensive simulations, we show that DeBraS is highly more scalable than centralized solutions and that it outperforms the current decentralized 6Tisch algorithms in up to 88.5% in terms of throughput for large network sizes.

2017-08-18
Priayoheswari, B., Kulothungan, K., Kannan, A..  2016.  Beta Reputation and Direct Trust Model for Secure Communication in Wireless Sensor Networks. Proceedings of the International Conference on Informatics and Analytics. :73:1–73:5.

WSN is a collection of tiny nodes that used to absorb the natural phenomenon from the operational environment and send it to the control station to extract the useful information. In most of the Existing Systems, the assumption is that the operational environment of the sensor nodes deployed is trustworthy and secure by means of some cryptographic operations and existing trust model. But in the reality it is not the case. Most of the existing systems lacks in providing reliable security to the sensor nodes. To overcome the above problem, in this paper, Beta Reputation and Direct Trust Model (BRDT) is the combination of Direct Trust and Beta Reputation Trust for secure communication in Wireless Sensor Networks. This model is used to perform secure routing in WSN. Overall, the method provides an efficient trust in WSN compared to existing methods.

2017-03-29
Nisha, Dave, M..  2016.  Storage as a parameter for classifying dynamic key management schemes proposed for WSNs. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). :51–56.

Real world applications of Wireless Sensor Networks such as border control, healthcare monitoring and target tracking require secure communications. Thus, during WSN setup, one of the first requirements is to distribute the keys to the sensor nodes which can be later used for securing the messages exchanged between sensors. The key management schemes in WSN secure the communication between a pair or a group of nodes. However, the storage capacity of the sensor nodes is limited which makes storage requirement as an important parameter for the evaluation of key management schemes. This paper classifies the existing key management schemes proposed for WSNs into three categories: storage inefficient, storage efficient and highly storage efficient key management schemes.

2015-05-06
Junwei Wang, Haifeng Wang.  2014.  Trust-based QoS routing algorithm for Wireless Sensor Networks. Control and Decision Conference (2014 CCDC), The 26th Chinese. :2492-2495.

With the rapid development of Wireless Sensor Networks (WSNs), besides the energy efficient, Quality of Service (QoS) supported and the validity of packet transmission should be considered under some circumstances. In this paper, according to summing up LEACH protocol's advantages and defects, combining with trust evaluation mechanism, energy and QoS control, a trust-based QoS routing algorithm is put forward. Firstly, energy control and coverage scale are adopted to keep load balance in the phase of cluster head selection. Secondly, trust evaluation mechanism is designed to increase the credibility of the network in the stage of node clusting. Finally, in the period of information transmission, verification and ACK mechanism also put to guarantee validity of data transmission. In this paper, it proposes the improved protocol. The improved protocol can not only prolong nodes' life expectancy, but also increase the credibility of information transmission and reduce the packet loss. Compared to typical routing algorithms in sensor networks, this new algorithm has better performance.

Kodali, Ravi Kishore.  2014.  Key management technique for WSNs. Region 10 Symposium, 2014 IEEE. :540-545.

In Wireless sensor networks (WSNs), many tiny sensor nodes communicate using wireless links and collaborate with each other. The data collected by each of the nodes is communicated towards the gateway node after carrying out aggregation of the data by different nodes. It is necessary to secure the data collected by the WSN nodes while they communicate among themselves using multi hop wireless links. To meet this objective it is required to make use of energy efficient cryptographic algorithms so that the same can be ported over the resource constrained nodes. It is needed to create trust initially among the WSN nodes while using any of the cryptographic algorithms. Towards this, a key management technique needs to be made use of. Due to the resource constrained nature of the WSN nodes and the remote deployment of the nodes, an implementation of conventional key management techniques is infeasible. This work proposes a key management technique, with its reduced resource overheads, which is highly suited to be used in hierarchical WSN applications. Both Identity based key management (IBK) and probabilistic key pre-distribution schemes are made use of at different hierarchical levels. The proposed key management technique has been implemented using IRIS WSN nodes. A comparison of resource overheads has also been carried out.

2015-05-05
Butun, I., Morgera, S.D., Sankar, R..  2014.  A Survey of Intrusion Detection Systems in Wireless Sensor Networks. Communications Surveys Tutorials, IEEE. 16:266-282.

Wireless Sensor Networking is one of the most promising technologies that have applications ranging from health care to tactical military. Although Wireless Sensor Networks (WSNs) have appealing features (e.g., low installation cost, unattended network operation), due to the lack of a physical line of defense (i.e., there are no gateways or switches to monitor the information flow), the security of such networks is a big concern, especially for the applications where confidentiality has prime importance. Therefore, in order to operate WSNs in a secure way, any kind of intrusions should be detected before attackers can harm the network (i.e., sensor nodes) and/or information destination (i.e., data sink or base station). In this article, a survey of the state-of-the-art in Intrusion Detection Systems (IDSs) that are proposed for WSNs is presented. Firstly, detailed information about IDSs is provided. Secondly, a brief survey of IDSs proposed for Mobile Ad-Hoc Networks (MANETs) is presented and applicability of those systems to WSNs are discussed. Thirdly, IDSs proposed for WSNs are presented. This is followed by the analysis and comparison of each scheme along with their advantages and disadvantages. Finally, guidelines on IDSs that are potentially applicable to WSNs are provided. Our survey is concluded by highlighting open research issues in the field.

2015-05-04
Manjula, R., Datta, R..  2014.  An energy-efficient routing technique for privacy preservation of assets monitored with WSN. Students' Technology Symposium (TechSym), 2014 IEEE. :325-330.

Wireless Sensor Networks (WSNs) are deployed to monitor the assets (endangered species) and report the locations of these assets to the Base Station (BS) also known as Sink. The hunter (adversary) attacks the network at one or two hops away from the Sink, eavesdrops the wireless communication links and traces back to the location of the asset to capture them. The existing solutions proposed to preserve the privacy of the assets lack in energy efficiency as they rely on random walk routing technique and fake packet injection technique so as to obfuscate the hunter from locating the assets. In this paper we present an energy efficient privacy preserved routing algorithm where the event (i.e., asset) detected nodes called as source nodes report the events' location information to the Base Station using phantom source (also known as phantom node) concept and a-angle anonymity concept. Routing is done using existing greedy routing protocol. Comparison through simulations shows that our solution reduces the energy consumption and delay while maintaining the same level of privacy as that of two existing popular techniques.
 

2015-05-01
Rahayu, T.M., Sang-Gon Lee, Hoon-Jae Lee.  2014.  Security analysis of secure data aggregation protocols in wireless sensor networks. Advanced Communication Technology (ICACT), 2014 16th International Conference on. :471-474.

In order to conserve wireless sensor network (WSN) lifetime, data aggregation is applied. Some researchers consider the importance of security and propose secure data aggregation protocols. The essential of those secure approaches is to make sure that the aggregators aggregate the data in appropriate and secure way. In this paper we give the description of ESPDA (Energy-efficient and Secure Pattern-based Data Aggregation) and SRDA (Secure Reference-Based Data Aggregation) protocol that work on cluster-based WSN and the deep security analysis that are different from the previously presented one.

Shigen Shen, Hongjie Li, Risheng Han, Vasilakos, A.V., Yihan Wang, Qiying Cao.  2014.  Differential Game-Based Strategies for Preventing Malware Propagation in Wireless Sensor Networks. Information Forensics and Security, IEEE Transactions on. 9:1962-1973.

Wireless sensor networks (WSNs) are prone to propagating malware because of special characteristics of sensor nodes. Considering the fact that sensor nodes periodically enter sleep mode to save energy, we develop traditional epidemic theory and construct a malware propagation model consisting of seven states. We formulate differential equations to represent the dynamics between states. We view the decision-making problem between system and malware as an optimal control problem; therefore, we formulate a malware-defense differential game in which the system can dynamically choose its strategies to minimize the overall cost whereas the malware intelligently varies its strategies over time to maximize this cost. We prove the existence of the saddle-point in the game. Further, we attain optimal dynamic strategies for the system and malware, which are bang-bang controls that can be conveniently operated and are suitable for sensor nodes. Experiments identify factors that influence the propagation of malware. We also determine that optimal dynamic strategies can reduce the overall cost to a certain extent and can suppress the malware propagation. These results support a theoretical foundation to limit malware in WSNs.