Visible to the public Biblio

Filters: Keyword is WSN  [Clear All Filters]
2020-10-26
Adilbekov, Ulugbek, Adilova, Anar, Saginbekov, Sain.  2018.  Providing Location Privacy Using Fake Sources in Wireless Sensor Networks. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). :1–4.
Wireless Sensor Networks (WSNs) consist of low-cost, resource-constrained sensor nodes and a designated node called a sink which collects data from the sensor nodes. A WSN can be used in numerous applications such as subject tracking and monitoring, where it is often desirable to keep the location of the subject private. Without location privacy protection, an adversary can locate the subject. In this paper, we propose an algorithm that tries to keep the subject location private from a global adversary, which can see the entire network traffic, in an energy efficient way.
2020-09-28
Madhan, E.S., Ghosh, Uttam, Tosh, Deepak K., Mandal, K., Murali, E., Ghosh, Soumalya.  2019.  An Improved Communications in Cyber Physical System Architecture, Protocols and Applications. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–6.
In recent trends, Cyber-Physical Systems (CPS) and Internet of Things interpret an evolution of computerized integration connectivity. The specific research challenges in CPS as security, privacy, data analytics, participate sensing, smart decision making. In addition, The challenges in Wireless Sensor Network (WSN) includes secure architecture, energy efficient protocols and quality of services. In this paper, we present an architectures of CPS and its protocols and applications. We propose software related mobile sensing paradigm namely Mobile Sensor Information Agent (MSIA). It works as plug-in based for CPS middleware and scalable applications in mobile devices. The working principle MSIA is acts intermediary device and gathers data from a various external sensors and its upload to cloud on demand. CPS needs tight integration between cyber world and man-made physical world to achieve stability, security, reliability, robustness, and efficiency in the system. Emerging software-defined networking (SDN) can be integrated as the communication infrastructure with CPS infrastructure to accomplish such system. Thus we propose a possible SDN-based CPS framework to improve the performance of the system.
2020-09-08
Wang, Haiyan.  2019.  The LDPC Code and Rateless Code for Wireless Sensor Network. 2019 2nd International Conference on Safety Produce Informatization (IICSPI). :389–393.
This paper gives a concept of wireless sensor network and describe the encoding algorithm and decoding algorithm along with the implementation of LDPC code and Rateless code. Compare the performances of those two code in WSN environment by making simulation in a Rayleigh channel in matlab and derive results and conclusions from the simulation.
2020-07-24
Munsyi, Sudarsono, Amang, Harun Al Rasvid, M. Udin.  2018.  An Implementation of Data Exchange in Environmental Monitoring Using Authenticated Attribute-Based Encryption with Revocation. 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC). :359—366.
Internet of things era grown very rapidly in Industrial Revolution 4.0, there are many researchers use the Wireless Sensor Network (WSN) technology to obtain the data for environmental monitoring. The data obtained from WSN will be sent to the Data Center, where users can view and collect all of data from the Data Center using end devices such as personal computer, laptop, and mobile phone. The Data Center would be very dangerous, because everyone can intercept, track and even modify the data. Security requirement to ensure the confidentiality all of stored data in the data center and give the authenticity in data has not changed during the collection process. Ciphertext Policy Attribute-Based Encryption (CP-ABE) can become a solution to secure the confidentiality for all of data. Only users with appropriate rule of policy can get the original data. To guarantee there is no changes during the collection process of the data then require the time stamp digital signature for securing the data integrity. To protect the confidentiality and data integrity, we propose a security mechanism using CP-ABE with user revocation and Time Stamp Digital Signature using Elliptic Curve Cryptography (ECC) 384 bits. Our system can do the revocation for the users who did the illegal access. Our system is not only securing the data but also providing the guarantee that is no changes during the collection process of the data from the Data Center.
2020-06-01
Pruthi, Vardaan, Mittal, Kanika, Sharma, Nikhil, Kaushik, Ila.  2019.  Network Layers Threats its Countermeasures in WSNs. 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :156—163.

WSN can be termed as a collection of dimensionally diffused nodes which are capable of surveilling and analyzing their surroundings. The sensors are delicate, transportable and small in size while being economical at the same time. However, the diffused nature of these networks also exposes them to a variety of security hazards. Hence, ensuring a reliable file exchange in these networks is not an easy job due to various security requirements that must be fulfilled. In this paper we concentrate mainly on network layer threats and their security countermeasures to overcome the scope of intruders to access the information without having any authentication on the network layer. Various network layer intrusions that are discussed here include Sinkhole Attack, Sybil Attack, Wormhole Attack, Selective Forwarding Attack, Blackhole Attack And Hello Flood Attack.

Alshinina, Remah, Elleithy, Khaled.  2018.  A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.
2020-05-11
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
2020-05-04
Liu, Shan, Yue, Keming, Zhang, Yu, Yang, Huq, Liu, Lu, Duan, Xiaorong.  2018.  The Research on IOT Security Architecture and Its Key Technologies. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1277–1280.
With the development of scientific information technology, the emergence of the Internet of Things (IOT) promoted the information industry once again to a new stage of economic and technological development. From the perspective of confidentiality, integrity, and availability of information security, this paper analyzed the current state of the IOT and the security threats, and then researched the security primary technologies of the IOT security architecture. IOT security architecture established the foundation for a reliable information security system for the IOT.
2020-02-26
Al-issa, Abdulaziz I., Al-Akhras, Mousa, ALsahli, Mohammed S., Alawairdhi, Mohammed.  2019.  Using Machine Learning to Detect DoS Attacks in Wireless Sensor Networks. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :107–112.

Widespread use of Wireless Sensor Networks (WSNs) introduced many security threats due to the nature of such networks, particularly limited hardware resources and infrastructure less nature. Denial of Service attack is one of the most common types of attacks that face such type of networks. Building an Intrusion Detection and Prevention System to mitigate the effect of Denial of Service attack is not an easy task. This paper proposes the use of two machine learning techniques, namely decision trees and Support Vector Machines, to detect attack signature on a specialized dataset. The used dataset contains regular profiles and several Denial of Service attack scenarios in WSNs. The experimental results show that decision trees technique achieved better (higher) true positive rate and better (lower) false positive rate than Support Vector Machines, 99.86% vs 99.62%, and 0.05% vs. 0.09%, respectively.

Kumar, A. Ranjith, Sivagami, A..  2019.  Balanced Load Clustering with Trusted Multipath Relay Routing Protocol for Wireless Sensor Network. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1–6.

Clustering is one of an eminent mechanism which deals with large number of nodes and effective consumption of energy in wireless sensor networks (WSN). Balanced Load Clustering is used to balance the channel bandwidth by incorporating the concept of HMAC. Presently several research studies works to improve the quality of service and energy efficiency of WSN but the security issues are not taken care of. Relay based multipath trust is one of the methods to secure the network. To this end, a novel approach called Balanced Load Clustering with Trusted Multipath Relay Routing Protocol (BLC-TMR2) to improve the performance of the network. The proposed protocol consists of two algorithms. Initially in order to reduce the energy consumption of the network, balanced load clustering (BLC) concepts is introduced. Secondly to secure the network from the malicious activity trusted multipath relay routing protocol (TMR2) is used. Multipath routing is monitored by the relay node and it computed the trust values. Network simulation (NS2) software is used to obtain the results and the results prove that the proposed system performs better the earlier methods the in terms of efficiency, consumption, QoS and throughput.

2020-02-17
Arshad, Akashah, Hanapi, Zurina Mohd, Subramaniam, Shamala K., Latip, Rohaya.  2019.  Performance Evaluation of the Geographic Routing Protocols Scalability. 2019 International Conference on Information Networking (ICOIN). :396–398.
Scalability is an important design factor for evaluating the performance of routing protocols as the network size or traffic load increases. One of the most appropriate design methods is to use geographic routing approach to ensure scalability. This paper describes a scalability study comparing Secure Region Based Geographic Routing (SRBGR) and Dynamic Window Secure Implicit Geographic Forwarding (DWSIGF) protocols in various network density scenarios based on an end-to-end delay performance metric. The simulation studies were conducted in MATLAB 2106b where the network densities were varied according to the network topology size with increasing traffic rates. The results showed that DWSIGF has a lower end-to-end delay as compared to SRBGR for both sparse (15.4%) and high density (63.3%) network scenarios.Despite SRBGR having good security features, there is a need to improve the performance of its end-to-end delay to fulfil the application requirements.
Biswal, Satya Ranjan, Swain, Santosh Kumar.  2019.  Model for Study of Malware Propagation Dynamics in Wireless Sensor Network. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :647–653.
Wireless Sensor Network (WSN) faces critical security challenges due to malware(worm, virus, malicious code etc.) attack. When a single node gets compromised by malware then start to spread in entire sensor network through neighboring sensor nodes. To understand the dynamics of malware propagation in WSN proposed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model. This model used the concept of epidemiology. The model focused on early detection of malicious signals presence in the network and accordingly application of security mechanism for its removal. The early detection method helps in controlling of malware spread and reduce battery consumption of sensor nodes. In this paper study the dynamics of malware propagation and stability analysis of the system. In epidemiology basic reproduction number is a crucial parameter which is used for the determination of malware status in the system. The expression of basic reproduction number has been obtained. Analyze the propagation dynamics and compared with previous model. The proposed model provides improved security mechanism in comparison to previous one. The extensive simulation results conform the analytical investigation and accuracy of proposed model.
Alsumayt, Albandari, Albawardy, Norah, Aldossary, Wejdan, Alghamdi, Ebtehal, Aljammaz, Aljawhra.  2019.  Improve the security over the wireless sensor networks in medical sector. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Nowadays with the huge technological development, the reliance on technology has become enormous. Wireless Sensor Networks (WSN) is an example of using the Internet and communication between the patient and the hospital. Easy use of such networks helps to increase the quality of communication between patient and hospital. With the development of technology increased risk in use. Any change in this data between the patient and the hospital may cause false data that may harm the patient. In this paper, a secure protocol is designed to ensure the confidentiality, integrity, and availability of data transfer between the hospital and the patient, depending on the AES and RC4 algorithms.
2019-12-30
Tariq, Mahak, Khan, Mashal, Fatima, Sana.  2018.  Detection of False Data in Wireless Sensor Network Using Hash Chain. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :126-129.

Wireless Sensor Network (WSN) is often to consist of adhoc devices that have low power, limited memory and computational power. WSN is deployed in hostile environment, due to which attacker can inject false data easily. Due to distributed nature of WSN, adversary can easily inject the bogus data into the network because sensor nodes don't ensure data integrity and not have strong authentication mechanism. This paper reviews and analyze the performance of some of the existing false data filtering schemes and propose new scheme to identify the false data injected by adversary or compromised node. Proposed schemes shown better and efficiently filtrate the false data in comparison with existing schemes.

2019-12-05
Zhai, Zhongyi, Qian, Junyan, Tao, Yuan, Zhao, Lingzhong, Cheng, Bo.  2018.  A Lightweight Timestamp-Based MAC Detection Scheme for XOR Network Coding in Wireless Sensor Networks. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :735-737.

Network coding has become a promising approach to improve the communication capability for WSN, which is vulnerable to malicious attacks. There are some solutions, including cryptographic and information-theory schemes, just can thwart data pollution attacks but are not able to detect replay attacks. In the paper, we present a lightweight timestamp-based message authentication code method, called as TMAC. Based on TMAC and the time synchronization technique, the proposed detection scheme can not only resist pollution attacks but also defend replay attacks simultaneously. Finally

2019-08-05
Ghugar, U., Pradhan, J..  2018.  NL-IDS: Trust Based Intrusion Detection System for Network Layer in Wireless Sensor Networks. 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). :512-516.

From the last few years, security in wireless sensor network (WSN) is essential because WSN application uses important information sharing between the nodes. There are large number of issues raised related to security due to open deployment of network. The attackers disturb the security system by attacking the different protocol layers in WSN. The standard AODV routing protocol faces security issues when the route discovery process takes place. The data should be transmitted in a secure path to the destination. Therefore, to support the process we have proposed a trust based intrusion detection system (NL-IDS) for network layer in WSN to detect the Black hole attackers in the network. The sensor node trust is calculated as per the deviation of key factor at the network layer based on the Black hole attack. We use the watchdog technique where a sensor node continuously monitors the neighbor node by calculating a periodic trust value. Finally, the overall trust value of the sensor node is evaluated by the gathered values of trust metrics of the network layer (past and previous trust values). This NL-IDS scheme is efficient to identify the malicious node with respect to Black hole attack at the network layer. To analyze the performance of NL-IDS, we have simulated the model in MATLAB R2015a, and the result shows that NL-IDS is better than Wang et al. [11] as compare of detection accuracy and false alarm rate.

2019-02-08
Quaum, M. A., Haider, S. Uddin, Haque, M. M..  2018.  An Improved Asymmetric Key Based Security Architecture for WSN. 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). :1-5.

Ubiquitous Healthcare System (U-Healthcare) is a well-known application of wireless sensor networking (WSN). In this system, the sensors take less power for operating the function. As the data transfers between sensor and other stations is sensitive so there needs to provide a security scheme. Due to the low life of sensor nodes in Wireless Sensor Networks (WSN), asymmetric key based security (AKS) architecture is always considered as unsuitable for these types of networks. Several papers have been published in recent past years regarding how to incorporate AKS in WSN, Haque et al's Asymmetric key based Architecture (AKA) is one of them. But later it is found that this system has authentication problem and therefore prone to man-in-the-middle (MITM) attack, furthermore it is not a truly asymmetric based scheme. We address these issues in this paper and proposed a complete asymmetric approach using PEKS-PM (proposed by Pham in [8]) to remove impersonation attack. We also found some other vulnerabilities in the original AKA system and proposed solutions, therefore making it a better and enhanced asymmetric key based architecture.

2018-11-19
Ali, S., Khan, M. A., Ahmad, J., Malik, A. W., ur Rehman, A..  2018.  Detection and Prevention of Black Hole Attacks in IOT Amp;Amp; WSN. 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). :217–226.

Wireless Sensor Network is the combination of small devices called sensor nodes, gateways and software. These nodes use wireless medium for transmission and are capable to sense and transmit the data to other nodes. Generally, WSN composed of two types of nodes i.e. generic nodes and gateway nodes. Generic nodes having the ability to sense while gateway nodes are used to route that information. IoT now extended to IoET (internet of Everything) to cover all electronics exist around, like a body sensor networks, VANET's, smart grid stations, smartphone, PDA's, autonomous cars, refrigerators and smart toasters that can communicate and share information using existing network technologies. The sensor nodes in WSN have very limited transmission range as well as limited processing speed, storage capacities and low battery power. Despite a wide range of applications using WSN, its resource constrained nature given birth to a number severe security attacks e.g. Selective Forwarding attack, Jamming-attack, Sinkhole attack, Wormhole attack, Sybil attack, hello Flood attacks, Grey Hole, and the most dangerous BlackHole Attacks. Attackers can easily exploit these vulnerabilities to compromise the WSN network.

Samudrala, A. N., Blum, R. S..  2017.  Asymptotic Analysis of a New Low Complexity Encryption Approach for the Internet of Things, Smart Cities and Smart Grid. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). :200–204.

Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.

Yin, H., Yin, Z., Yang, Y., Sun, J..  2018.  Research on the Node Information Security of WSN Based on Multi-Party Data Fusion Algorithm. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :400–405.

Smart grid is the cornerstone of the modern urban construction, leading the development trend of the urban power industry. Wireless sensor network (WSN) is widely used in smart power grid. It mainly covers two routing methods, the plane routing protocol and the clustering routing protocol. Since the plane routing protocol needs to maintain a large routing table and works with a poor scalability, it will increase the overall cost of the system in practical use. Therefore, in this paper, the clustering routing protocol is selected to achieve a better operation performance of the wireless sensor network. In order to enhance the reliability of the routing security, the data fusion technology is also utilized. Based on this method, the rationality of the topology structure of the smart grid and the security of the node information can be effectively improved.

2018-10-26
Bhoyar, D. G., Yadav, U..  2017.  Review of jamming attack using game theory. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). :1–4.

The paper presents the study of protecting wireless sensor network (WSNs) by using game theory for malicious node. By means of game theory the malicious attack nodes can be effectively modeled. In this research there is study on different game theoretic strategies for WSNs. Wireless sensor network are made upon the open shared medium which make easy to built attack. Jamming is the most serious security threats for information preservation. The key purpose of this paper is to present a general synopsis of jamming technique, a variety of types of jammers and its prevention technique by means of game theory. There is a network go through from numerous kind of external and internal attack. The jamming of attack that can be taking place because of the high communication inside the network execute by the nodes in the network. As soon as the weighty communications raise the power expenditure and network load also increases. In research work a game theoretic representation is define for the safe communication on the network.

2018-06-20
Bhuvaneswari, R., Ramachandran, R..  2017.  Prevention of Denial of Service (DoS) attack in OLSR protocol using fictitious nodes and ECC algorithm. 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET). :1–5.

Security is the most important issue which needs to be given utmost importance and as both `Mobile Ad hoc Networks (MANET) and Wireless Sensor Networks (WSN) have similar system models, their security issues are also similar. This study deals in analysing the various lapses in security and the characteristics of various routing protocol's functionality and structure. This paper presents the implementation of ECC algorithm in the prevention of Denial of Service (DoS) attack through fictitious node. Optimized Link State Routing (OLSR) protocol is a MANET routing protocol and is evaluated mainly for two things. Primarily OLSR is less secure like AODV and others. The reason for it being less secure is that it is a table-driven in nature and uses a methodology called selective flooding technique, where redundancy is reduced and thus the security possibilities of the protocol is reduced. Another reason for selecting OLSR is that is an highly effective routing protocol for MANET. A brief information about formal routing is provided by the proposed methodology termed Denial Contradictions with Fictitious Node Mechanism (DCFM) which provides brief information about formal routing. Here, fictitious node acts as a virtual node and large networks are managed from attacks. More than 95% of attacks are prevented by this proposed methodology and the solution is applicable all the other DoS attacks of MANET.

2018-06-11
Kumar, K. N., Nene, M. J..  2017.  Chip-Based symmetric and asymmetric key generation in hierarchical wireless sensors networks. 2017 International Conference on Inventive Systems and Control (ICISC). :1–6.
Realization of an application using Wireless Sensor Networks (WSNs) using Sensor Nodes (SNs) brings in profound advantages of ad-hoc and flexible network deployments. Implementation of these networks face immense challenges due to short wireless range; along with limited power, storage & computational capabilities of SNs. Also, due to the tiny physical attributes of the SNs in WSNs, they are prone to physical attacks. In the context of WSNs, the physical attacks may range from destroying, lifting, replacing and adding new SNs. The work in this paper addresses the threats induced due to physical attacks and, further proposes a methodology to mitigate it. The methodology incorporates the use of newly proposed secured and efficient symmetric and asymmetric key distribution technique based on the additional commodity hardware Trusted Platform Module (TPM). Further, the paper demonstrates the merits of the proposed methodology. With some additional economical cost for the hardware, the proposed technique can fulfill the security requirement of WSNs, like confidentiality, integrity, authenticity, resilience to attack, key connectivity and data freshness.
2018-05-09
Hamouda, R. Ben, Hafaiedh, I. Ben.  2017.  Formal Modeling and Verification of a Wireless Body Area Network (WBAN) Protocol: S-TDMA Protocol. 2017 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC). :72–77.

WBANs integrate wearable and implanted devices with wireless communication and information processing systems to monitor the well-being of an individual. Various MAC (Medium Access Control) protocols with different objectives have been proposed for WBANs. The fact that any flaw in these critical systems may lead to the loss of one's life implies that testing and verifying MAC's protocols for such systems are on the higher level of importance. In this paper, we firstly propose a high-level formal and scalable model with timing aspects for a MAC protocol particularly designed for WBANs, named S-TDMA (Statistical frame based TDMA protocol). The protocol uses TDMA (Time Division Multiple Access) bus arbitration, which requires temporal aspect modeling. Secondly, we propose a formal validation of several relevant properties such as deadlock freedom, fairness and mutual exclusion of this protocol at a high level of abstraction. The protocol was modeled using a composition of timed automata components, and verification was performed using a real-time model checker.

2018-03-26
Al Nahas, Beshr, Duquennoy, Simon, Landsiedel, Olaf.  2017.  Network-Wide Consensus Utilizing the Capture Effect in Low-Power Wireless Networks. Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. :1:1–1:14.

In low-power wireless networking, new applications such as cooperative robots or industrial closed-loop control demand for network-wide consensus at low-latency and high reliability. Distributed consensus protocols is a mature field of research in a wired context, but has received little attention in low-power wireless settings. In this paper, we present A2: Agreement in the Air, a system that brings distributed consensus to low-power multi-hop networks. A2 introduces Synchrotron, a synchronous transmissions kernel that builds a robust mesh by exploiting the capture effect, frequency hopping with parallel channels, and link-layer security. A2 builds on top of this reliable base layer and enables the two- and three-phase commit protocols, as well as network services such as group membership, hopping sequence distribution and re-keying. We evaluate A2 on four public testbeds with different deployment densities and sizes. A2 requires only 475 ms to complete a two-phase commit over 180 nodes. The resulting duty cycle is 0.5% for 1-minute intervals. We show that A2 achieves zero losses end-to-end over long experiments, representing millions of data points. When adding controlled failures, we show that two-phase commit ensures transaction consistency in A2 while three-phase commit provides liveness at the expense of inconsistency under specific failure scenarios.