Visible to the public Biblio

Filters: Keyword is WSN  [Clear All Filters]
2023-07-21
Manjula, P., Baghavathi Priya, S..  2022.  Detection of Falsified Selfish Node with Optimized Trust Computation Model In Chimp -AODV Based WSN. 2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC). :52—57.
In Wireless Sensor Networks (WSNs), energy and security are two critical concerns that must be addressed. Because of the scarcity of energy, several security measures are restricted. For secure data routing in WSN, it becomes vital to identify insider packet drop attacks. The trust mechanism is an effective strategy for detecting this assault. Each node in this system validates the trustworthiness of its neighbors before transmitting packets, ensuring that only trust-worthy nodes get packets. With such a trust-aware scheme, however, there is a risk of false alarm. This work develops an adaptive trust computation model (TCM)which is implemented in our already proposed Chimp Optimization Algorithm-based Energy-Aware Secure Routing Protocol (COA-EASRP) for WSN. The proposed technique computes the optimal path using the hybrid combination of COA-EASRP and AODV as well as TCM is used to indicate false alarms in detecting selfish nodes. Our Proposed approach provides the series of Simulation outputs carried out based on various parameters
2023-01-20
An, Guowei, Han, Congzheng, Zhang, Fugui, Liu, Kun.  2022.  Research on Electromagnetic Energy Harvesting Technology for Smart Grid Application. 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). :441—443.
The electromagnetic energy harvesting technology is a new and effective way to supply power to the condition monitoring sensors installed on or near the transmission line. We will use Computer Simulation Technology Software to simulate the different designs of stand-alone electromagnetic energy harvesters The power generated by energy harvesters of different design structures is compared and analyzed through simulation and experimental results. We then propose an improved design of energy harvester.
2022-12-06
Rani, Jyoti, Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Detailed Review of the IoT with Detection of Sinkhole Attacks in RPL based network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.

The “Internet of Things” (IoT) is internetworking of physical devices known as 'things', algorithms, equipment and techniques that allow communication with another device, equipment and software over the network. And with the advancement in data communication, every device must be connected via the Internet. For this purpose, we use resource-constrained sensor nodes for collecting data from homes, offices, hospitals, industries and data centers. But various vulnerabilities may ruin the functioning of the sensor nodes. Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized, secure routing protocol designed for the 6LoWPAN IoT network. It's a proactive routing protocol that works on the destination-oriented topology to perform safe routing. The Sinkhole is a networking attack that destroys the topology of the RPL protocol as the attacker node changes the route of all the traffic in the IoT network. In this paper, we have given a survey of Sinkhole attacks in IoT and proposed different methods for preventing and detecting these attacks in a low-power-based IoT network.

Sachindra, U. G. T., Rajapaksha, U. U. S..  2022.  Security Architecture Development in Internet of Things Operating Systems. 2022 International Research Conference on Smart Computing and Systems Engineering (SCSE). 5:151-156.

Due to the widespread use of the Internet of Things (IoT) in recent years, the need for IoT technologies to handle communications with the rest of the globe has grown dramatically. Wireless sensor networks (WSNs) play a vital role in the operation of the IoT. The creation of Internet of Things operating systems (OS), which can handle the newly constructed IoT hardware, as well as new protocols and procedures for all communication levels, all of which are now in development, will pave the way for the future. When compared to other devices, these gadgets require a comparatively little amount of electricity, memory, and other resources. This has caused the scientific community to become more aware of the relevance of IoT device operating systems as a result of their findings. These devices may be made more versatile and powerful by including an operating system that contains real-time capabilities, kernel, networking, and other features, among other things. IEEE 802.15.4 networks are linked together using IPv6, which has a wide address space and so enables more devices to connect to the internet using the 6LoWPAN protocol. It is necessary to address some privacy and security issues that have arisen as a result of the widespread use of the Internet, notwithstanding the great benefits that have resulted. For the Internet of Things operating systems, this research has provided a network security architecture that ensures secure communication by utilizing the Cooja network simulator in combination with the Contiki operating system and demonstrate and explained how the nodes can protect from the network layer and physical layer attacks. Also, this research has depicted the energy consumption results of each designated node type during the authentication and communication process. Finally, proposed a few further improvements for the architecture which will enhance the network layer protection.

2022-10-03
Alzaabi, Aaesha, Aldoobi, Ayesha, Alserkal, Latifa, Alnuaimi, Deena, Alsuwaidi, Mahra, Ababneh, Nedal.  2021.  Enhancing Source-Location Privacy in IoT Wireless Sensor Networks Routing. 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET). :376–381.
Wireless Sensor Networks (WSNs) and their implementations have been the subject of numerous studies over the last two decades. WSN gathers, processes, and distributes wireless data to the database storage center. This study aims to explain the four main components of sensor nodes and the mechanism of WSN's. WSNs have 5 available types that will be discussed and explained in this paper. In addition to that, shortest path routing will be thoroughly analyzed. In “The Protocol”. Reconfigurable logic applications have grown in number and complexity. Shortest path routing is a method of finding paths through a network with the least distance or other cost metric. The efficiency of the shortest path protocol mechanism and the reliability of encryption are both present which adds security and accuracy of location privacy and message delivery. There are different forms of key management, such as symmetric and asymmetric encryption, each with its own set of processing techniques. The use of encryption technique to secure sensor nodes is addressed, as well as how we overcame the problem with the aid of advanced techniques. Our major findings are that adding more security doesn't cost much and by cost we mean energy consumption, throughput and latency.
2022-04-19
Wagle, S.K., Bazilraj, A.A, Ray, K.P..  2021.  Energy Efficient Security Solution for Attacks on Wireless Sensor Networks. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :313–318.
Wireless Sensor Networks (WSN) are gaining popularity as being the backbone of Cyber physical systems, IOT and various data acquisition from sensors deployed in remote, inaccessible terrains have remote deployment. However due to remote deployment, WSN is an adhoc network of large number of sensors either heli-dropped in inaccessible terrain like volcanoes, Forests, border areas are highly energy deficient and available in large numbers. This makes it the right soup to become vulnerable to various kinds of Security attacks. The lack of energy and resources makes it deprived of developing a robust security code for mitigation of various kinds of attacks. Many attempts have been made to suggest a robust security Protocol. But these consume so much energy, bandwidth, processing power, memory and other resources that the sole purpose of data gathering from inaccessible terrain from energy deprived sensors gets defeated. This paper makes an attempt to study the types of attacks on different layers of WSN and the examine the recent trends in development of various security protocols to mitigate the attacks. Further, we have proposed a simple, lightweight but powerful security protocol known as Simple Sensor Security Protocol (SSSP), which captures the uniqueness of WSN and its isolation from internet to develop an energy efficient security solution.
2022-03-23
Islam, Al Amin, Taher, Kazi Abu.  2021.  A Novel Authentication Mechanism for Securing Underwater Wireless Sensors from Sybil Attack. 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). :1—6.
Underwater Wireless Sensor Networks (UWSN) has vast application areas. Due to the unprotected nature, underwater security is a prime concern. UWSN becomes vulnerable to different attacks due to malicious nodes. Sybil attack is one of the major attacks in UWSN. Most of the proposed security methods are based on encryption and decryption which consumes resources of the sensor nodes. In this paper, a simple authentication mechanism is proposed for securing the UWSN from the Sybil attack. As the nodes have very less computation power and energy resources so this work is not followed any kind of encryption and decryption technique. An authentication process is designed in such a way that node engaged in communication authenticate neighboring nodes by node ID and the data stored in the cluster head. This work is also addressed sensor node compromisation issue through Hierarchical Fuzzy System (HFS) based trust management model. The trust management model has been simulated in Xfuzzy-3.5. After the simulation conducted, the proposed trust management mechanism depicts significant performance on detecting compromised nodes.
2022-03-01
Amaran, Sibi, Mohan, R. Madhan.  2021.  Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1100–1104.
Wireless sensor networks (WSN) hold numerous battery operated, compact sized, and inexpensive sensor nodes, which are commonly employed to observe the physical parameters in the target environment. As the sensor nodes undergo arbitrary placement in the open areas, there is a higher possibility of affected by distinct kinds of attacks. For resolving the issue, intrusion detection system (IDS) is developed. This paper presents a new optimal Support Vector Machine (OSVM) based IDS in WSN. The presented OSVM model involves the proficient selection of optimal kernels in the SVM model using whale optimization algorithm (WOA) for intrusion detection. Since the SVM kernel gets altered using WOA, the application of OSVM model can be used for the detection of intrusions with proficient results. The performance of the OSVM model has been investigated on the benchmark NSL KDDCup 99 dataset. The resultant simulation values portrayed the effectual results of the OSVM model by obtaining a superior accuracy of 94.09% and detection rate of 95.02%.
2022-02-07
Abbood, Zainab Ali, Atilla, Doğu Çağdaş, Aydin, Çağatay, Mahmoud, Mahmoud Shuker.  2021.  A Survey on Intrusion Detection System in Ad Hoc Networks Based on Machine Learning. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–8.
This advanced research survey aims to perform intrusion detection and routing in ad hoc networks in wireless MANET networks using machine learning techniques. The MANETs are composed of several ad-hoc nodes that are randomly or deterministically distributed for communication and acquisition and to forward the data to the gateway for enhanced communication securely. MANETs are used in many applications such as in health care for communication; in utilities such as industries to monitor equipment and detect any malfunction during regular production activity. In general, MANETs take measurements of the desired application and send this information to a gateway, whereby the user can interpret the information to achieve the desired purpose. The main importance of MANETs in intrusion detection is that they can be trained to detect intrusion and real-time attacks in the CIC-IDS 2019 dataset. MANETs routing protocols are designed to establish routes between the source and destination nodes. What these routing protocols do is that they decompose the network into more manageable pieces and provide ways of sharing information among its neighbors first and then throughout the whole network. The landscape of exciting libraries and techniques is constantly evolving, and so are the possibilities and options for experiments. Implementing the framework in python helps in reducing syntactic complexity, increases performance compared to implementations in scripting languages, and provides memory safety.
2022-01-10
Thomas, Diya.  2021.  A Graph-based Approach to Detect DoB Attack. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :422–423.
Wireless sensor networks (WSNs) are underlying network infrastructure for a variety of surveillance applications. The network should be tolerant of unexpected failures of sensor nodes to meet the Quality of Service (QoS) requirements of these applications. One major cause of failure is active security attacks such as Depletion-of-Battery (DoB) attacks. This paper model the problem of detecting such attacks as an anomaly detection problem in a dynamic graph. The problem is addressed by employing a cluster ensemble approach called the K-Means Spectral and Hierarchical ensemble (KSH) approach. The experimental result shows that KSH detected DoB attacks with better accuracy when compared to baseline approaches.
2021-11-29
Nair, Devika S, BJ, Santhosh Kumar.  2021.  Identifying Rank Attacks and Alert Application in WSN. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :798–802.
Routing protocol for low power and lossy networks (RPL) is a fundamental routing protocol of 6LoWPAN, a centre correspondence standard for the Internet of Things. RPL outplay other wireless sensor and ad hoc routing protocols in the aspect of service (QoS), device management, and energy-saving performance. The Rank definition in RPL addresses several issues, such as path optimization, loop avoidance, and power overhead management. RPL rank and version number attacks are two types of the most common forms of RPL attacks, may have crucial ramification for RPL networks. The research directed upon these attacks includes considerable vulnerabilities and efficiency issues. The rank attack on sensor networks is perhaps the utmost common, posing a challenge to network connectivity by falling data or disrupting routing routes. This work presents a rank attack detection system focusing on RPL. Considering many of such issues a method has been proposed using spatial correlation function (SCF) and Dijkstra's algorithm considering parameters like energy and throughput.
2021-11-08
Zahid, Muhammad Noaman, Jiang, Jianliang, Lu, Heng, Rizvi, Saad, Eric, Deborah, Khan, Shahrukh, Zhang, Hengli.  2020.  Security Issues and Challenges in RFID, Wireless Sensor Network and Optical Communication Networks and Solutions. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). :592–599.
Nowadays, Security is the biggest challenge in communication networks. Well defined security protocols not only solve the privacy and security issues but also help to reduce the implementation cost and simplify network's operation. Network society demands more reliable and secure network services as well as infrastructure. In communication networks, data theft, hacking, fraud, cyber warfare are serious security threats. Security as defined by experts is confirming protected communication amongst communication/computing systems and consumer applications in private and public networks, it is important for promising privacy, confidentiality, and protection of information. This paper highlights the security related issues and challenges in communication networks. We also present the holistic view for the underlaying physical layer including physical infrastructure attacks, jamming, interception, and eavesdropping. This research focused on improving the security measures and protocols in different communication networks.
2021-10-04
Ghorashi, Seyed Ramin, Zia, Tanveer, Jiang, Yinhao.  2020.  Optimisation of Lightweight Klein Encryption Algorithm With 3 S-box. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1–5.
Internet of Things (IoT) have offered great opportunities for the growth of smart objects in the last decade. Smart devices are deployed in many fields such as smart cities, healthcare and agriculture. One of the applications of IoT is Wireless Sensor Networks (WSN) that require inexpensive and space-economic design for remote sensing and communication capabilities. This, unfortunately, lead to their inherent security vulnerabilities. Lightweight cryptography schemes are designed to counter many attacks in low-powered devices such as the IoT and WSN. These schemes can provide support for data encryption and key management while maintaining some level of efficiency. Most of these block ciphers provide good security. However, due to the complex cryptographic scheme's efficiency and optimisation is an issue. In this work, we focus on a new lightweight encryption scheme called the Klein block cipher. The algorithms of Klein block cipher are analysed for performance and security optimisations. A new algorithm which consists of 3-layer substitute box is proposed to reduce the need for resource consumption but maintain the security.
2021-08-17
Khasawneh, Samer, Chang, Zhengwei, Liu, Rongke, Kadoch, Michel, Lu, Jizhao.  2020.  A Decentralized Hierarchical Key Management Scheme for Grid-Organized Wireless Sensor Networks (DHKM). 2020 International Wireless Communications and Mobile Computing (IWCMC). :1613–1617.
Wireless Sensor Networks (WSNs) are attracted great attention in the past decade due to the unlimited number of applications they support. However, security has always been a serious concern for these networks due to the insecure communication links they exploit. In order to mitigate the possible security threats, sophisticated key management schemes must be employed to ensure the generating, distributing and revocation of the cryptographic keys that are needed to implement variety of security measures. In this paper, we propose a novel decentralized key management scheme for hierarchical grid organized WSNs. The main goal of our scheme is to reduce the total number of cryptographic keys stored in sensor nodes while maintaining the desired network connectivity. The performance analysis shows the efficiency of the proposed protocol in terms of communication overhead, storage cost and network connectivity.
2021-06-01
Pandey, Pragya, Kaur, Inderjeet.  2020.  Improved MODLEACH with Effective Energy Utilization Technique for WSN. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :987—992.
Wireless sensor network (WSNs) formed from an enormous number of sensor hub with the capacity to detect and process information in the physical world in a convenient way. The sensor nodes contain a battery imperative, which point of confinement the system lifetime. Because of vitality limitations, the arrangement of WSNs will required development methods to keep up the system lifetime. The vitality productive steering is the need of the innovative WSN systems to build the process time of system. The WSN system is for the most part battery worked which should be ration as conceivable as to cause system to continue longer and more. WSN has developed as a significant figuring stage in the ongoing couple of years. WSN comprises of countless sensor points, which are worked by a little battery. The vitality of the battery worked nodes is the defenseless asset of the WSN, which is exhausted at a high rate when data is transmitted, because transmission vitality is subject to the separation of transmission. Sensor nodes can be sent in the cruel condition. When they are conveyed, it ends up difficult to supplant or energize its battery. Therefore, the battery intensity of sensor hub ought to be utilized proficiently. Many steering conventions have been proposed so far to boost the system lifetime and abatement the utilization vitality, the fundamental point of the sensor hubs is information correspondence, implies move of information packs from one hub to other inside the system. This correspondence is finished utilizing grouping and normal vitality of a hub. Each bunch chooses a pioneer called group head. The group heads CHs are chosen based by and large vitality and the likelihood. There are number of bunching conventions utilized for the group Head determination, the principle idea is the existence time of a system which relies on the normal vitality of the hub. In this work we proposed a model, which utilizes the leftover vitality for group head choice and LZW pressure Technique during the transmission of information bundles from CHs to base station. Work enhanced the throughput and life time of system and recoveries the vitality of hub during transmission and moves more information in less vitality utilization. The Proposed convention is called COMPRESSED MODLEACH.
2021-04-09
Soni, G., Sudhakar, R..  2020.  A L-IDS against Dropping Attack to Secure and Improve RPL Performance in WSN Aided IoT. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :377—383.

In the Internet of Things (IoT), it is feasible to interconnect networks of different devices and all these different devices, such as smartphones, sensor devices, and vehicles, are controlled according to a particular user. These different devices are delivered and accept the information on the network. This thing is to motivate us to do work on IoT and the devices used are sensor nodes. The validation of data delivery completely depends on the checks of count data forwarding in each node. In this research, we propose the Link Hop Value-based Intrusion Detection System (L-IDS) against the blackhole attack in the IoT with the assist of WSN. The sensor nodes are connected to other nodes through the wireless link and exchange data routing, as well as data packets. The LHV value is identified as the attacker's presence by integrating the data delivery in each hop. The LHV is always equivalent to the Actual Value (AV). The RPL routing protocol is used IPv6 to address the concept of routing. The Routing procedure is interrupted by an attacker by creating routing loops. The performance of the proposed L-IDS is compared to the RPL routing security scheme based on existing trust. The proposed L-IDS procedure is validating the presence of the attacker at every source to destination data delivery. and also disables the presence of the attacker in the network. Network performance provides better results in the existence of a security scheme and also fully represents the inoperative presence of black hole attackers in the network. Performance metrics show better results in the presence of expected IDS and improve network reliability.

2021-03-15
Akter, S., Rahman, M. S., Mansoor, N..  2020.  An Efficient Routing Protocol for Secured Communication in Cognitive Radio Sensor Networks. 2020 IEEE Region 10 Symposium (TENSYMP). :1713–1716.
This paper introduces an efficient reactive routing protocol considering the mobility and the reliability of a node in Cognitive Radio Sensor Networks (CRSNs). The proposed protocol accommodates the dynamic behavior of the spectrum availability and selects a stable transmission path from a source node to the destination. Outlined as a weighted graph problem, the proposed protocol measures the weight for an edge the measuring the mobility patterns of the nodes and channel availability. Furthermore, the mobility pattern of a node is defined in the proposed routing protocol from the viewpoint of distance, speed, direction, and node's reliability. Besides, the spectrum awareness in the proposed protocol is measured over the number of shared common channels and the channel quality. It is anticipated that the proposed protocol shows efficient routing performance by selecting stable and secured paths from source to destination. Simulation is carried out to assess the performance of the protocol where it is witnessed that the proposed routing protocol outperforms existing ones.
2021-02-23
Ashraf, S., Ahmed, T..  2020.  Sagacious Intrusion Detection Strategy in Sensor Network. 2020 International Conference on UK-China Emerging Technologies (UCET). :1—4.
Almost all smart appliances are operated through wireless sensor networks. With the passage of time, due to various applications, the WSN becomes prone to various external attacks. Preventing such attacks, Intrusion Detection strategy (IDS) is very crucial to secure the network from the malicious attackers. The proposed IDS methodology discovers the pattern in large data corpus which works for different types of algorithms to detect four types of Denial of service (DoS) attacks, namely, Grayhole, Blackhole, Flooding, and TDMA. The state-of-the-art detection algorithms, such as KNN, Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), and ANN are applied to the data corpus and analyze the performance in detecting the attacks. The analysis shows that these algorithms are applicable for the detection and prediction of unavoidable attacks and can be recommended for network experts and analysts.
2020-12-21
Preda, M., Patriciu, V..  2020.  Simulating RPL Attacks in 6lowpan for Detection Purposes. 2020 13th International Conference on Communications (COMM). :239–245.
The Internet of Things (IoT) integrates the Internet and electronic devices belonging to different domains, such as smart home automation, industrial processes, military applications, health, and environmental monitoring. Usually, IoT devices have limited resources and Low Power and Lossy Networks (LLNs) are being used to interconnect such devices. Routing Protocol for Low-Power and Lossy Networks (RPL) is one of the preferred routing protocols for this type of network, since it was specially developed for LLNs, also known as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). In this paper the most well-known routing attacks against 6LoWPAN networks were studied and implemented through simulation, conducting a behavioral analysis of network components (resources, topology, and data traffic) under attack condition. In order to achieve a better understanding on how attacks in 6LoWPAN work, we first conducted a study on 6LoWPAN networks and RPL protocol functioning. Furthermore, we also studied a series of well-known routing attacks against this type of Wireless Sensor Networks and these attacks were then simulated using Cooja simulator provided by Contiki operating system. The results obtained after the simulations are discussed along with other previous researches. This analysis may be of real interest when it comes to identify indicators of compromise for each type of attack and appropriate countermeasures for prevention and detection of these attacks.
2020-12-14
Wang, H., Ma, L., Bai, H..  2020.  A Three-tier Scheme for Sybil Attack Detection in Wireless Sensor Networks. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :752–756.
Wireless sensor network (WSN) is a wireless self-organizing multi-hop network that can sense and collect the information of the monitored environment through a certain number of sensor nodes which deployed in a certain area and transmit the collected information to the client. Due to the limited power and data capacity stored by the micro sensor, it is weak in communication with other nodes, data storage and calculation, and is very vulnerable to attack and harm to the entire network. The Sybil attack is a classic example. Sybil attack refers to the attack in which malicious nodes forge multiple node identities to participate in network operation. Malicious attackers can forge multiple node identities to participate in data forwarding. So that the data obtained by the end user without any use value. In this paper, we propose a three-tier detection scheme for the Sybil node in the severe environment. Every sensor node will determine whether they are Sybil nodes through the first-level and second-level high-energy node detection. Finally, the base station determines whether the Sybil node detected by the first two stages is true Sybil node. The simulation results show that our proposed scheme significantly improves network lifetime, and effectively improves the accuracy of Sybil node detection.
2020-10-26
Zhou, Liming, Shan, Yingzi.  2019.  Multi-branch Source Location Privacy Protection Scheme Based on Random Walk in WSNs. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :543–547.
In many applications, source nodes send the sensing information of the monitored objects and the sinks receive the transmitted data. Considering the limited resources of sensor nodes, location privacy preservation becomes an important issue. Although many schemes are proposed to preserve source or sink location security, few schemes can preserve the location security of source nodes and sinks. In order to solve this problem, we propose a novel of multi-branch source location privacy protection method based on random walk. This method hides the location of real source nodes by setting multiple proxy sources. And multiple neighbors are randomly selected by the real source node as receivers until a proxy source receives the packet. In addition, the proxy source is chosen randomly, which can prevent the attacker from obtaining the location-related data of the real source node. At the same time, the scheme sets up a branch interference area around the base station to interfere with the adversary by increasing routing branches. Simulation results describe that our scheme can efficiently protect source and sink location privacy, reduce the communication overhead, and prolong the network lifetime.
DaSilva, Gianni, Loud, Vincent, Salazar, Ana, Soto, Jeff, Elleithy, Abdelrahman.  2019.  Context-Oriented Privacy Protection in Wireless Sensor Networks. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–4.
As more devices become connected to the internet and new technologies emerge to connect them, security must keep up to protect data during transmission and at rest. Several instances of security breaches have forced many companies to investigate the effectiveness of their security measures. In this paper, we discuss different methodologies for protecting data as it relates to wireless sensor networks (WSNs). Data collected from these sensors range in type from location data of an individual to surveillance for military applications. We propose a solution that protects the location of the base station and the nodes while transmitting data.
Xu, Mengmeng, Zhu, Hai, Wang, Juanjuan, Xu, Hengzhou.  2019.  Dynamic and Disjoint Routing Mechanism for Protecting Source Location Privacy in WSNs. 2019 15th International Conference on Computational Intelligence and Security (CIS). :310–314.
In this paper, we investigate the protection mechanism of source location privacy, in which back-tracing attack is performed by an adversary. A dynamic and disjoint routing mechanism (DDRM) is proposed to achieve a strong protection for source location privacy in an energy-efficient manner. Specially, the selection of intermediate node renders the message transmission randomly and flexibly. By constructing k disjoint paths, an adversary could not receive sufficient messages to locate the source node. Simulation results illustrate the effectiveness of the proposed mechanism.
Bai, Leqiang, Li, Guoku.  2018.  Location Privacy Protection of WSN Based on Network Partition and Angle. 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1254–1260.
For the phantom routing algorithm, phantom source nodes are concentrated near the real source node, and for the angle based phantom routing algorithm, phantom source nodes focus on some areas, and the existing source location privacy protection algorithm has low security cycle, a source location privacy protection algorithm of wireless sensor networks based on angle and network partition is proposed. The algorithm selects the next hop node on forwarding path according to the angle relationship between neighbors, and ensures that phantom source nodes are far away from the real source node and have the diversity of geographic location through network partition. Simulation results show that, compared with the existing source location privacy protection algorithm, this algorithm can induce attackers to deviate from the real path, and increase security cycle.
Mutalemwa, Lilian C., Shin, Seokjoo.  2018.  Realizing Source Location Privacy in Wireless Sensor Networks Through Agent Node Routing. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1283–1285.
Wireless Sensor Networks (WSNs) are used in sensitive applications such as in asset monitoring applications. Due to the sensitivity of information in these applications, it is important to ensure that flow of data between sensor nodes is secure and does not expose any information about the source node or the monitored assets. This paper proposes a scheme to preserve the source location privacy based on random routing techniques. To achieve high privacy, the proposed scheme randomly sends packet to sink node through tactically positioned agent nodes. The position of agent nodes is designed to guarantee that successive packets are routed through highly random and perplexing routing paths as compared to other routing schemes. Simulation results demonstrate that proposed scheme provides longer safety period and higher privacy against both, patient and cautious adversaries.