Visible to the public Biblio

Filters: Keyword is deep learning (dl)  [Clear All Filters]
2023-09-20
Samia, Bougareche, Soraya, Zehani, Malika, Mimi.  2022.  Fashion Images Classification using Machine Learning, Deep Learning and Transfer Learning Models. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). :1—5.
Fashion is the way we present ourselves which mainly focuses on vision, has attracted great interest from computer vision researchers. It is generally used to search fashion products in online shopping malls to know the descriptive information of the product. The main objectives of our paper is to use deep learning (DL) and machine learning (ML) methods to correctly identify and categorize clothing images. In this work, we used ML algorithms (support vector machines (SVM), K-Nearest Neirghbors (KNN), Decision tree (DT), Random Forest (RF)), DL algorithms (Convolutionnal Neurals Network (CNN), AlexNet, GoogleNet, LeNet, LeNet5) and the transfer learning using a pretrained models (VGG16, MobileNet and RestNet50). We trained and tested our models online using google colaboratory with Tensorflow/Keras and Scikit-Learn libraries that support deep learning and machine learning in Python. The main metric used in our study to evaluate the performance of ML and DL algorithms is the accuracy and matrix confusion. The best result for the ML models is obtained with the use of ANN (88.71%) and for the DL models is obtained for the GoogleNet architecture (93.75%). The results obtained showed that the number of epochs and the depth of the network have an effect in obtaining the best results.
2023-08-23
Alja'afreh, Mohammad, Obaidat, Muath, Karime, Ali, Alouneh, Sahel.  2022.  Optimizing System-on-Chip Performance Using AI and SDN: Approaches and Challenges. 2022 Ninth International Conference on Software Defined Systems (SDS). :1—8.
The advancement of modern multimedia and data-intensive classes of applications demands the development of hardware that delivers better performance. Due to the evolution of 5G, Edge-Computing, the Internet of Things, Software-Defined networks, etc., the data produced by the devices such as sensors are increasing. A software-Defined network is a powerful paradigm that is capable of automating networking and cloud computing. Software-Defined Network has controllers, devices, and applications which produce a huge amount of data. The processing of data inside the device as well as between the devices needs a better hardware architecture with more cores to ensure speedy performance. The System-on-Chip approach alone will not be capable to handle this dense core comprised of hardware. We have to blend Network-on-Chip along with System-on-Chip to increase the potential to include more cores capable to handle more threads. Artificial Intelligence, a key enabler in next-generation devices is capable of producing a better architecture design with optimized performance. In this paper, we are discussing and endeavouring how System-on-Chip, Network-on-Chip, Software-Defined Networks, and Artificial Intelligence can be physically, logically, and contextually incorporated to deliver improved computation and networking outcomes.
2022-05-19
Anusha, M, Leelavathi, R.  2021.  Analysis on Sentiment Analytics Using Deep Learning Techniques. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :542–547.
Sentiment analytics is the process of applying natural language processing and methods for text-based information to define and extract subjective knowledge of the text. Natural language processing and text classifications can deal with limited corpus data and more attention has been gained by semantic texts and word embedding methods. Deep learning is a powerful method that learns different layers of representations or qualities of information and produces state-of-the-art prediction results. In different applications of sentiment analytics, deep learning methods are used at the sentence, document, and aspect levels. This review paper is based on the main difficulties in the sentiment assessment stage that significantly affect sentiment score, pooling, and polarity detection. The most popular deep learning methods are a Convolution Neural Network and Recurrent Neural Network. Finally, a comparative study is made with a vast literature survey using deep learning models.
2022-01-10
Sallam, Youssef F., Ahmed, Hossam El-din H., Saleeb, Adel, El-Bahnasawy, Nirmeen A., El-Samie, Fathi E. Abd.  2021.  Implementation of Network Attack Detection Using Convolutional Neural Network. 2021 International Conference on Electronic Engineering (ICEEM). :1–6.
The Internet obviously has a major impact on the global economy and human life every day. This boundless use pushes the attack programmers to attack the data frameworks on the Internet. Web attacks influence the reliability of the Internet and its administrations. These attacks are classified as User-to-Root (U2R), Remote-to-Local (R2L), Denial-of-Service (DoS) and Probing (Probe). Subsequently, making sure about web framework security and protecting data are pivotal. The conventional layers of safeguards like antivirus scanners, firewalls and proxies, which are applied to treat the security weaknesses are insufficient. So, Intrusion Detection Systems (IDSs) are utilized to screen PC and data frameworks for security shortcomings. IDS adds more effectiveness in securing networks against attacks. This paper presents an IDS model based on Deep Learning (DL) with Convolutional Neural Network (CNN) hypothesis. The model has been evaluated on the NSLKDD dataset. It has been trained by Kddtrain+ and tested twice, once using kddtrain+ and the other using kddtest+. The achieved test accuracies are 99.7% and 98.43% with 0.002 and 0.02 wrong alert rates for the two test scenarios, respectively.
2021-08-11
Pan, Xiaoqin, Tang, Shaofei, Zhu, Zuqing.  2020.  Privacy-Preserving Multilayer In-Band Network Telemetry and Data Analytics. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :142—147.
As a new paradigm for the monitoring and troubleshooting of backbone networks, the multilayer in-band network telemetry (ML-INT) with deep learning (DL) based data analytics (DA) has recently been proven to be effective on realtime visualization and fine-grained monitoring. However, the existing studies on ML-INT&DA systems have overlooked the privacy and security issues, i.e., a malicious party can apply tapping in the data reporting channels between the data and control planes to illegally obtain plaintext ML-INT data in them. In this paper, we discuss a privacy-preserving DL-based ML-INT&DA system for realizing AI-assisted network automation in backbone networks in the form of IP-over-Optical. We first show a lightweight encryption scheme based on integer vector homomorphic encryption (IVHE), which is used to encrypt plaintext ML-INT data. Then, we architect a DL model for anomaly detection, which can directly analyze the ciphertext ML-INT data. Finally, we present the implementation and experimental demonstrations of the proposed system. The privacy-preserving DL-based ML-INT&DA system is realized in a real IP over elastic optical network (IP-over-EON) testbed, and the experimental results verify the feasibility and effectiveness of our proposal.
2019-02-08
Yang, Chun, Wen, Yu, Guo, Jianbin, Song, Haitao, Li, Linfeng, Che, Haoyang, Meng, Dan.  2018.  A Convolutional Neural Network Based Classifier for Uncompressed Malware Samples. Proceedings of the 1st Workshop on Security-Oriented Designs of Computer Architectures and Processors. :15-17.

This paper proposes a deep learning based method for efficient malware classification. Specially, we convert the malware classification problem into the image classification problem, which can be addressed through leveraging convolutional neural networks (CNNs). For many malware families, the images belonging to the same family have similar contours and textures, so we convert the Binary files of malware samples to uncompressed gray-scale images which possess complete information of the original malware without artificial feature extraction. We then design classifier based on Tensorflow framework of Google by combining the deep learning (DL) and malware detection technology. Experimental results show that the uncompressed gray-scale images of the malware are relatively easy to distinguish and the CNN based classifier can achieve a high success rate of 98.2%