Visible to the public Biblio

Filters: Keyword is logic obfuscation  [Clear All Filters]
2022-07-29
Li, Leon, Ni, Shuyi, Orailoglu, Alex.  2021.  JANUS: Boosting Logic Obfuscation Scope Through Reconfigurable FSM Synthesis. 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :292—303.
Logic obfuscation has been proposed as a counter-measure against supply chain threats such as overproduction and IP piracy. However, the functional corruption it offers can be exploited by oracle-guided pruning attacks to recover the obfuscation key, forcing existing logic obfuscation methods to trivialize their output corruption which in turn leads to a diminished protection scope. In this paper, we address this quandary through an FSM obfuscation methodology that delivers obfuscation scope not only through external secrets but more importantly through inherent state transition patterns. We leverage a minimum-cut graph partitioning algorithm to divide the FSM diagram and implement the resulting partitions with distinct FF configurations, enabled by a novel synthesis methodology supporting reconfigurable FFs. The obfuscated FSM can be activated by invoking key values to dynamically switch the FF configuration at a small number of inter-partition transitions. Yet, the overall obfuscation scope comprises far more intra-partition transitions which are driven solely by the inherent transition sequences and thus reveal no key trace. We validate the security of the proposed obfuscation method against numerous functional and structural attacks. Experimental results confirm its delivery of extensive obfuscation scope at marginal overheads.
2021-10-04
Farahmandi, Farimah, Sinanoglu, Ozgur, Blanton, Ronald, Pagliarini, Samuel.  2020.  Design Obfuscation versus Test. 2020 IEEE European Test Symposium (ETS). :1–10.
The current state of the integrated circuit (IC) ecosystem is that only a handful of foundries are at the forefront, continuously pushing the state of the art in transistor miniaturization. Establishing and maintaining a FinFET-capable foundry is a billion dollar endeavor. This scenario dictates that many companies and governments have to develop their systems and products by relying on 3rd party IC fabrication. The major caveat within this practice is that the procured silicon cannot be blindly trusted: a malicious foundry can effectively modify the layout of the IC, reverse engineer its IPs, and overproduce the entire chip. The Hardware Security community has proposed many countermeasures to these threats. Notably, obfuscation has gained a lot of traction - here, the intent is to hide the functionality from the untrusted foundry such that the aforementioned threats are hindered or mitigated. In this paper, we summarize the research efforts of three independent research groups towards achieving trustworthy ICs, even when fabricated in untrusted offshore foundries. We extensively address the use of logic locking and its many variants, as well as the use of high-level synthesis (HLS) as an obfuscation approach of its own.
2020-11-09
Hazari, N. A., Alsulami, F., Niamat, M..  2018.  FPGA IP Obfuscation Using Ring Oscillator Physical Unclonable Function. NAECON 2018 - IEEE National Aerospace and Electronics Conference. :105–108.
IP piracy, reverse engineering, and tampering with FPGA based IP is increasing over time. ROPUF based IP obfuscation can provide a feasible solution. In this paper, a novel approach of FPGA IP obfuscation is implemented using Ring Oscillator based Physical Unclonable Function (ROPUF) and random logic gates. This approach provides a lock and key mechanism as well as authentication of FPGA based designs to protect from security threats. Using the Xilinx ISE design tools and ISCAS 89 benchmarks we have designed a secure FPGA based IP protection scheme with an average of 15% area and 10% of power overhead.
2020-01-27
Shamsi, Kaveh, Li, Meng, Plaks, Kenneth, Fazzari, Saverio, Pan, David Z., Jin, Yier.  2019.  IP Protection and Supply Chain Security through Logic Obfuscation: A Systematic Overview. ACM Transactions on Design Automation of Electronic Systems (TODAES). 24:65:1-65:36.

The globalization of the semiconductor supply chain introduces ever-increasing security and privacy risks. Two major concerns are IP theft through reverse engineering and malicious modification of the design. The latter concern in part relies on successful reverse engineering of the design as well. IC camouflaging and logic locking are two of the techniques under research that can thwart reverse engineering by end-users or foundries. However, developing low overhead locking/camouflaging schemes that can resist the ever-evolving state-of-the-art attacks has been a challenge for several years. This article provides a comprehensive review of the state of the art with respect to locking/camouflaging techniques. We start by defining a systematic threat model for these techniques and discuss how various real-world scenarios relate to each threat model. We then discuss the evolution of generic algorithmic attacks under each threat model eventually leading to the strongest existing attacks. The article then systematizes defences and along the way discusses attacks that are more specific to certain kinds of locking/camouflaging. The article then concludes by discussing open problems and future directions.

2019-02-14
Shamsi, Kaveh, Li, Meng, Pan, David Z., Jin, Yier.  2018.  Cross-Lock: Dense Layout-Level Interconnect Locking Using Cross-Bar Architectures. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :147-152.

Logic locking is an attractive defense against a series of hardware security threats. However, oracle guided attacks based on advanced Boolean reasoning engines such as SAT, ATPG and model-checking have made it difficult to securely lock chips with low overhead. While the majority of existing locking schemes focus on gate-level locking, in this paper we present a layout-inclusive interconnect locking scheme based on cross-bars of metal-to-metal programmable-via devices. We demonstrate how this enables configuring a large obfuscation key with a small number of physical key wires contributing to zero to little substrate area overhead. Dense interconnect locking based on these circuit level primitives shows orders of magnitude better SAT attack resiliency compared to an XOR/XNOR gate-insertion locking with the same key length which has a much higher overhead.