Visible to the public Biblio

Filters: Keyword is Minimization  [Clear All Filters]
2023-07-12
Li, Fenghua, Chen, Cao, Guo, Yunchuan, Fang, Liang, Guo, Chao, Li, Zifu.  2022.  Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
2023-04-28
Baksi, Rudra Prasad.  2022.  Pay or Not Pay? A Game-Theoretical Analysis of Ransomware Interactions Considering a Defender’s Deception Architecture 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S). :53–54.
Malware created by the Advanced Persistent Threat (APT) groups do not typically carry out the attacks in a single stage. The “Cyber Kill Chain” framework developed by Lockheed Martin describes an APT through a seven stage life cycle [5] . APT groups are generally nation state actors [1] . They perform highly targeted attacks and do not stop until the goal is achieved [7] . Researchers are always working toward developing a system and a process to create an environment safe from APT type attacks [2] . In this paper, the threat considered is ransomware which are developed by APT groups. WannaCry is an example of a highly sophisticated ransomware created by the Lazurus group of North Korea and its level of sophistication is evident from the existence of a contingency plan of attack upon being discovered [3] [6] . The major contribution of this research is the analysis of APT type ransomware using game theory to present optimal strategies for the defender through the development of equilibrium solutions when faced with APT type ransomware attack. The goal of the equilibrium solutions is to help the defender in preparedness before the attack and in minimization of losses during and after the attack.
Xu, Yuanchao, Ye, Chencheng, Shen, Xipeng, Solihin, Yan.  2022.  Temporal Exposure Reduction Protection for Persistent Memory. 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). :908–924.
The long-living nature and byte-addressability of persistent memory (PM) amplifies the importance of strong memory protections. This paper develops temporal exposure reduction protection (TERP) as a framework for enforcing memory safety. Aiming to minimize the time when a PM region is accessible, TERP offers a complementary dimension of memory protection. The paper gives a formal definition of TERP, explores the semantics space of TERP constructs, and the relations with security and composability in both sequential and parallel executions. It proposes programming system and architecture solutions for the key challenges for the adoption of TERP, which draws on novel supports in both compilers and hardware to efficiently meet the exposure time target. Experiments validate the efficacy of the proposed support of TERP, in both efficiency and exposure time minimization.
ISSN: 2378-203X
2023-03-31
Xu, Zichuan, Ren, Wenhao, Liang, Weifa, Xu, Wenzheng, Xia, Qiufen, Zhou, Pan, Li, Mingchu.  2022.  Schedule or Wait: Age-Minimization for IoT Big Data Processing in MEC via Online Learning. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :1809–1818.
The age of data (AoD) is identified as one of the most novel and important metrics to measure the quality of big data analytics for Internet-of-Things (IoT) applications. Meanwhile, mobile edge computing (MEC) is envisioned as an enabling technology to minimize the AoD of IoT applications by processing the data in edge servers close to IoT devices. In this paper, we study the AoD minimization problem for IoT big data processing in MEC networks. We first propose an exact solution for the problem by formulating it as an Integer Linear Program (ILP). We then propose an efficient heuristic for the offline AoD minimization problem. We also devise an approximation algorithm with a provable approximation ratio for a special case of the problem, by leveraging the parametric rounding technique. We thirdly develop an online learning algorithm with a bounded regret for the online AoD minimization problem under dynamic arrivals of IoT requests and uncertain network delay assumptions, by adopting the Multi-Armed Bandit (MAB) technique. We finally evaluate the performance of the proposed algorithms by extensive simulations and implementations in a real test-bed. Results show that the proposed algorithms outperform existing approaches by reducing the AoD around 10%.
ISSN: 2641-9874
2022-08-26
Chowdhury, Sayak Ray, Zhou, Xingyu, Shroff, Ness.  2021.  Adaptive Control of Differentially Private Linear Quadratic Systems. 2021 IEEE International Symposium on Information Theory (ISIT). :485—490.
In this paper we study the problem of regret minimization in reinforcement learning (RL) under differential privacy constraints. This work is motivated by the wide range of RL applications for providing personalized service, where privacy concerns are becoming paramount. In contrast to previous works, we take the first step towards non-tabular RL settings, while providing a rigorous privacy guarantee. In particular, we consider the adaptive control of differentially private linear quadratic (LQ) systems. We develop the first private RL algorithm, Private-OFU-RL which is able to attain a sub-linear regret while guaranteeing privacy protection. More importantly, the additional cost due to privacy is only on the order of \$\textbackslashtextbackslashfrac\textbackslashtextbackslashln(1/\textbackslashtextbackslashdelta)ˆ1/4\textbackslashtextbackslashvarepsilonˆ1/2\$ given privacy parameters \$\textbackslashtextbackslashvarepsilon, \textbackslashtextbackslashdelta \textbackslashtextgreater 0\$. Through this process, we also provide a general procedure for adaptive control of LQ systems under changing regularizers, which not only generalizes previous non-private controls, but also serves as the basis for general private controls.
Tumash, Liudmila, Canudas-de-Wit, Carlos, Monache, Maria Laura Delle.  2021.  Boundary Control for Multi-Directional Traffic on Urban Networks. 2021 60th IEEE Conference on Decision and Control (CDC). :2671–2676.
This paper is devoted to boundary control design for urban traffic described on a macroscopic scale. The state corresponds to vehicle density that evolves on a continuum two-dimensional domain that represents a continuous approximation of a urban network. Its parameters are interpolated as a function of distance to physical roads. The dynamics are governed by a new macroscopic multi-directional traffic model that encompasses a system of four coupled partial differential equations (PDE) each describing density evolution in one direction layer: North, East, West and South (NEWS). We analyse the class of desired states that the density governed by NEWS model can achieve. Then a boundary control is designed to drive congested traffic to an equilibrium with the minimal congestion level. The result is validated numerically using the real structure of Grenoble downtown (a city in France).
2022-07-13
Ashmawy, Doaa, Reyhani-Masoleh, Arash.  2021.  A Faster Hardware Implementation of the AES S-box. 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH). :123—130.
In this paper, we propose a very fast, yet compact, AES S-box, by applying two techniques to a composite field \$GF((2ˆ4)ˆ2)\$ fast AES S-box. The composite field fast S-box has three main components, namely the input transformation matrix, the inversion circuit, and the output transformation matrix. The core inversion circuit computes the multiplicative inverse over the composite field \$GF((2ˆ4)ˆ2)\$ and consists of three arithmetic blocks over subfield \$GF(2ˆ4)\$, namely exponentiation, subfield inverter, and output multipliers. For the first technique, we consider multiplication of the input of the composite field fast S-box by 255 nonzero 8-bit binary field elements. The multiplication constant increases the variety of the input and output transformation matrices of the S-box by a factor of 255, hence increasing the search space of the logic minimization algorithm correspondingly. For the second technique, we reduce the delay of the composite field fast S-box, by combining the output multipliers and the output transformation matrix. Moreover, we modify the architecture of the input transformation matrix and re-design the exponentiation block and the subfield inverter for lower delay and area. We find that 8 unique binary transformation matrices could be used to change from the binary field \$GF(2ˆ8)\$ to the composite field \$GF((2ˆ4)ˆ2)\$ at the input of the composite field S-box. We use Matla \$\textbackslashtextbackslashmathbfb\$ ® to derive all \$(255\textbackslashtextbackslashtimes 8=2040)\$ new input transformation matrices. We search the matrices for the fastest and lowest complexity implementation and the minimal one is selected for the proposed fast S-box. The proposed fast S-box is 24% faster (with 5% increase in area) than the composite field fast design and 10% faster (with about 1% increase in area) than the fastest S-box available in the literature, to the best of our knowledge.
2022-05-20
Cotae, Paul, Reindorf, Nii Emil Alexander.  2021.  Using Counterfactual Regret Minimization and Monte Carlo Tree Search for Cybersecurity Threats. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–6.
Mitigating cyber threats requires adequate understanding of the attacker characteristics in particular their patterns. Such knowledge is essential in addressing the defensive measures that mitigate the attack. If the attacker enters in the network system, the game tree model generates resources by to counter such threat. This is done by altering the parity in the next game tree iteration which yield an adequate response to counter it. If an attacker enters a network system, and a game tree models the resources he must interface with, then that game tree can be altered, by changing the parity on the next to last iteration. This paper analyzes the sequence of patterns based on incoming attacks. The detection of attacker’s pattern and subsequent changes in iterations to counter threat can be viewed as adequate resource or know how in cyber threat mitigations It was realized that changing the game tree of the hacker deprives the attacker of network resources and hence would represent a defensive measure against the attack; that is changing varying or understanding attacker paths, creates an effective defensive measure to protect the system against the incoming threats.. In this paper we analyze a unique combination of CFR and MCTS that attempts to detect the behavior of a hacker. Counterfactual Regret (CFR) is a game theory concept that helps identify patterns of attacks. The pattern recognition concept of Monte Carlo Tree Search (MCTS) is used in harmony with CFR in order to enhance the detection of attacks.
2022-02-24
Barthe, Gilles, Blazy, Sandrine, Hutin, Rémi, Pichardie, David.  2021.  Secure Compilation of Constant-Resource Programs. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–12.
Observational non-interference (ONI) is a generic information-flow policy for side-channel leakage. Informally, a program is ONI-secure if observing program leakage during execution does not reveal any information about secrets. Formally, ONI is parametrized by a leakage function l, and different instances of ONI can be recovered through different instantiations of l. One popular instance of ONI is the cryptographic constant-time (CCT) policy, which is widely used in cryptographic libraries to protect against timing and cache attacks. Informally, a program is CCT-secure if it does not branch on secrets and does not perform secret-dependent memory accesses. Another instance of ONI is the constant-resource (CR) policy, a relaxation of the CCT policy which is used in Amazon's s2n implementation of TLS and in several other security applications. Informally, a program is CR-secure if its cost (modelled by a tick operator over an arbitrary semi-group) does not depend on secrets.In this paper, we consider the problem of preserving ONI by compilation. Prior work on the preservation of the CCT policy develops proof techniques for showing that main compiler optimisations preserve the CCT policy. However, these proof techniques critically rely on the fact that the semi-group used for modelling leakage satisfies the property: l1+ l1' = l2+l2'$\Rightarrow$l1=l2$\wedge$ l1' = l2' Unfortunately, this non-cancelling property fails for the CR policy, because its underlying semi-group is ($\backslash$mathbbN, +) and it is currently not known how to extend existing techniques to policies that do not satisfy non-cancellation.We propose a methodology for proving the preservation of the CR policy during a program transformation. We present an implementation of some elementary compiler passes, and apply the methodology to prove the preservation of these passes. Our results have been mechanically verified using the Coq proof assistant.
2021-07-07
Mishra, Prateek, Yadav, Sanjay Kumar, Arora, Sunil.  2020.  TCB Minimization towards Secured and Lightweight IoT End Device Architecture using Virtualization at Fog Node. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :16–21.
An Internet of Things (IoT) architecture comprised of cloud, fog and resource constrained IoT end devices. The exponential development of IoT has increased the processing and footprint overhead in IoT end devices. All the components of IoT end devices that establish Chain of Trust (CoT) to ensure security are termed as Trusted Computing Base (TCB). The increased overhead in the IoT end device has increased the demand to increase the size of TCB surface area hence increases complexity of TCB surface area and also the increased the visibility of TCB surface area to the external world made the IoT end devices architecture over-architectured and unsecured. The TCB surface area minimization that has been remained unfocused reduces the complexity of TCB surface area and visibility of TCB components to the external un-trusted world hence ensures security in terms of confidentiality, integrity, authenticity (CIA) at the IoT end devices. The TCB minimization thus will convert the over-architectured IoT end device into lightweight and secured architecture highly desired for resource constrained IoT end devices. In this paper we review the IoT end device architectures proposed in the recent past and concluded that these architectures of resource constrained IoT end devices are over-architectured due to larger TCB and ignored bugs and vulnerabilities in TCB hence un-secured. We propose the Novel levelled architecture with TCB minimization by replacing oversized hypervisor with lightweight Micro(μ)-hypervisor i.e. μ-visor and transferring μ-hypervisor based virtualization over fog node for light weight and secured IoT End device architecture. The bug free TCB components confirm stable CoT for guaranteed CIA resulting into robust Trusted Execution Environment (TEE) hence secured IoT end device architecture. Thus the proposed resulting architecture is secured with minimized SRAM and flash memory combined footprint 39.05% of the total available memory per device. In this paper we review the IoT end device architectures proposed in the recent past and concluded that these architectures of resource constrained IoT end devices are over-architectured due to larger TCB and ignored bugs and vulnerabilities in TCB hence un-secured. We propose the Novel levelled architecture with TCB minimization by replacing oversized hypervisor with lightweight Micro(μ)-hypervisor i.e. μ-visor and transferring μ-hypervisor based virtualization over fog node for light weight and secured IoT End device architecture. The bug free TCB components confirm stable CoT for guaranteed CIA resulting into robust Trusted Execution Environment (TEE) hence secured IoT end device architecture. Thus the proposed resulting architecture is secured with minimized SRAM and flash memory combined footprint 39.05% of the total available memory per device.
2021-06-28
Yao, Manting, Yuan, Weina, Wang, Nan, Zhang, Zeyu, Qiu, Yuan, Liu, Yichuan.  2020.  SS3: Security-Aware Vendor-Constrained Task Scheduling for Heterogeneous Multiprocessor System-on-Chips. 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC). :1–6.
Design for trust approaches can protect an MPSoC system from hardware Trojan attack due to the high penetration of third-party intellectual property. However, this incurs significant design cost by purchasing IP cores from various IP vendors, and the IP vendors providing particular IP are always limited, making these approaches unable to be performed in practice. This paper treats IP vendor as constraint, and tasks are scheduled with a minimized security constraint violations, furthermore, the area of MPSoC is also optimized during scheduling. Experimental results demonstrate the effectiveness of our proposed algorithm, by reducing 0.37% security constraint violations.
2021-06-24
Gamagedara Arachchilage, Nalin Asanka, Hameed, Mumtaz Abdul.  2020.  Designing a Serious Game: Teaching Developers to Embed Privacy into Software Systems. 2020 35th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). :7—12.
Software applications continue to challenge user privacy when users interact with them. Privacy practices (e.g. Data Minimisation (DM), Privacy by Design (PbD) or General Data Protection Regulation (GDPR)) and related “privacy engineering” methodologies exist and provide clear instructions for developers to implement privacy into software systems they develop that preserve user privacy. However, those practices and methodologies are not yet a common practice in the software development community. There has been no previous research focused on developing “educational” interventions such as serious games to enhance software developers' coding behaviour. Therefore, this research proposes a game design framework as an educational tool for software developers to improve (secure) coding behaviour, so they can develop privacy-preserving software applications that people can use. The elements of the proposed framework were incorporated into a gaming application scenario that enhances the software developers' coding behaviour through their motivation. The proposed work not only enables the development of privacy-preserving software systems but also helping the software development community to put privacy guidelines and engineering methodologies into practice.
2020-03-12
Cortés, Francisco Muñoz, Gaviria Gómez, Natalia.  2019.  A Hybrid Alarm Management Strategy in Signature-Based Intrusion Detection Systems. 2019 IEEE Colombian Conference on Communications and Computing (COLCOM). :1–6.

Signature-based Intrusion Detection Systems (IDS) are a key component in the cybersecurity defense strategy for any network being monitored. In order to improve the efficiency of the intrusion detection system and the corresponding mitigation action, it is important to address the problem of false alarms. In this paper, we present a comparative analysis of two approaches that consider the false alarm minimization and alarm correlation techniques. The output of this analysis provides us the elements to propose a parallelizable strategy designed to achieve better results in terms of precision, recall and alarm load reduction in the prioritization of alarms. We use Prelude SIEM as the event normalizer in order to process security events from heterogeneous sensors and to correlate them. The alarms are verified using the dynamic network context information collected from the vulnerability analysis, and they are prioritized using the HP Arsight priority formula. The results show an important reduction in the volume of alerts, together with a high precision in the identification of false alarms.

2019-06-24
Chouikhi, S., Merghem-Boulahia, L., Esseghir, M..  2018.  Energy Demand Scheduling Based on Game Theory for Microgrids. 2018 IEEE International Conference on Communications (ICC). :1–6.

The advent of smart grids offers us the opportunity to better manage the electricity grids. One of the most interesting challenges in the modern grids is the consumer demand management. Indeed, the development in Information and Communication Technologies (ICTs) encourages the development of demand-side management systems. In this paper, we propose a distributed energy demand scheduling approach that uses minimal interactions between consumers to optimize the energy demand. We formulate the consumption scheduling as a constrained optimization problem and use game theory to solve this problem. On one hand, the proposed approach aims to reduce the total energy cost of a building's consumers. This imposes the cooperation between all the consumers to achieve the collective goal. On the other hand, the privacy of each user must be protected, which means that our distributed approach must operate with a minimal information exchange. The performance evaluation shows that the proposed approach reduces the total energy cost, each consumer's individual cost, as well as the peak to average ratio.

2018-05-24
Bampis, C. G., Rusu, C., Hajj, H., Bovik, A. C..  2017.  Robust Matrix Factorization for Collaborative Filtering in Recommender Systems. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :415–419.

Recently, matrix factorization has produced state-of-the-art results in recommender systems. However, given the typical sparsity of ratings, the often large problem scale, and the large number of free parameters that are often implied, developing robust and efficient models remains a challenge. Previous works rely on dense and/or sparse factor matrices to estimate unavailable user ratings. In this work we develop a new formulation for recommender systems that is based on projective non-negative matrix factorization, but relaxes the non-negativity constraint. Driven by a simple yet instructive intuition, the proposed formulation delivers promising and stable results that depend on a minimal number of parameters. Experiments that we conducted on two popular recommender system datasets demonstrate the efficiency and promise of our proposed method. We make available our code and datasets at https://github.com/christosbampis/PCMF\_release.

2017-03-08
Liu, Weijian, Chen, Zeqi, Chen, Yunhua, Yao, Ruohe.  2015.  An \#8467;1/2-BTV regularization algorithm for super-resolution. 2015 4th International Conference on Computer Science and Network Technology (ICCSNT). 01:1274–1281.

In this paper, we propose a novelregularization term for super-resolution by combining a bilateral total variation (BTV) regularizer and a sparsity prior model on the image. The term is composed of the weighted least squares minimization and the bilateral filter proposed by Elad, but adding an ℓ1/2 regularizer. It is referred to as ℓ1/2-BTV. The proposed algorithm serves to restore image details more precisely and eliminate image noise more effectively by introducing the sparsity of the ℓ1/2 regularizer into the traditional bilateral total variation (BTV) regularizer. Experiments were conducted on both simulated and real image sequences. The results show that the proposed algorithm generates high-resolution images of better quality, as defined by both de-noising and edge-preservation metrics, than other methods.

2015-05-05
de Oliveira Saraiva, F., Nobuhiro Asada, E..  2014.  Multi-agent systems applied to topological reconfiguration of smart power distribution systems. Neural Networks (IJCNN), 2014 International Joint Conference on. :2812-2819.

One of the various features expected for a smart power distribution system - a smart grid in the power distribution level - is the possibility of the fully automated operation for certain control actions. Although this is very expected, it requires various logic, sensor and actuator technologies in a system which, historically, has a low level of automation. One of the most analyzed problems for the distribution system is the topology reconfiguration. The reconfiguration has been applied to various objectives: minimization of power losses, voltage regulation, load balancing, to name a few. The solution method in most cases is centralized and its application is not in real-time. From the new perspectives of advanced distribution systems, fast and adaptive response of the control actions are required, specially in the presence of alternative generation sources and electrical vehicles. In this context, the multi-agent system, which embeds the necessary control actions and decision making is proposed for the topology reconfiguration aiming the loss reduction. The concept of multi-agent system for distribution system is proposed and two case studies with 11-Bus and 16-Bus system are presented.
 

2015-05-01
Ammann, P., Delamaro, M.E., Offutt, J..  2014.  Establishing Theoretical Minimal Sets of Mutants. Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh International Conference on. :21-30.

Mutation analysis generates tests that distinguish variations, or mutants, of an artifact from the original. Mutation analysis is widely considered to be a powerful approach to testing, and hence is often used to evaluate other test criteria in terms of mutation score, which is the fraction of mutants that are killed by a test set. But mutation analysis is also known to provide large numbers of redundant mutants, and these mutants can inflate the mutation score. While mutation approaches broadly characterized as reduced mutation try to eliminate redundant mutants, the literature lacks a theoretical result that articulates just how many mutants are needed in any given situation. Hence, there is, at present, no way to characterize the contribution of, for example, a particular approach to reduced mutation with respect to any theoretical minimal set of mutants. This paper's contribution is to provide such a theoretical foundation for mutant set minimization. The central theoretical result of the paper shows how to minimize efficiently mutant sets with respect to a set of test cases. We evaluate our method with a widely-used benchmark.