Visible to the public Biblio

Filters: Keyword is business data processing  [Clear All Filters]
2021-04-08
Roy, P., Mazumdar, C..  2018.  Modeling of Insider Threat using Enterprise Automaton. 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). :1—4.
Substantial portions of attacks on the security of enterprises are perpetrated by Insiders having authorized privileges. Thus insider threat and attack detection is an important aspect of Security management. In the published literature, efforts are on to model the insider threats based on the behavioral traits of employees. The psycho-social behaviors are hard to encode in the software systems. Also, in some cases, there are privacy issues involved. In this paper, the human and non-human agents in a system are described in a novel unified model. The enterprise is described as an automaton and its states are classified secure, safe, unsafe and compromised. The insider agents and threats are modeled on the basis of the automaton and the model is validated using a case study.
2021-03-30
Ashiku, L., Dagli, C..  2020.  Agent Based Cybersecurity Model for Business Entity Risk Assessment. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—6.

Computer networks and surging advancements of innovative information technology construct a critical infrastructure for network transactions of business entities. Information exchange and data access though such infrastructure is scrutinized by adversaries for vulnerabilities that lead to cyber-attacks. This paper presents an agent-based system modelling to conceptualize and extract explicit and latent structure of the complex enterprise systems as well as human interactions within the system to determine common vulnerabilities of the entity. The model captures emergent behavior resulting from interactions of multiple network agents including the number of workstations, regular, administrator and third-party users, external and internal attacks, defense mechanisms for the network setting, and many other parameters. A risk-based approach to modelling cybersecurity of a business entity is utilized to derive the rate of attacks. A neural network model will generalize the type of attack based on network traffic features allowing dynamic state changes. Rules of engagement to generate self-organizing behavior will be leveraged to appoint a defense mechanism suitable for the attack-state of the model. The effectiveness of the model will be depicted by time-state chart that shows the number of affected assets for the different types of attacks triggered by the entity risk and the time it takes to revert into normal state. The model will also associate a relevant cost per incident occurrence that derives the need for enhancement of security solutions.

2021-03-29
Aigner, A., Khelil, A..  2020.  An Effective Semantic Security Metric for Industrial Cyber-Physical Systems. 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). 1:87—92.

The emergence of Industrial Cyber-Physical Systems (ICPS) in today's business world is still steadily progressing to new dimensions. Although they bring many new advantages to business processes and enable automation and a wider range of service capability, they also propose a variety of new challenges. One major challenge, which is introduced by such System-of-Systems (SoS), lies in the security aspect. As security may not have had that significant role in traditional embedded system engineering, a generic way to measure the level of security within an ICPS would provide a significant benefit for system engineers and involved stakeholders. Even though many security metrics and frameworks exist, most of them insufficiently consider an SoS context and the challenges of such environments. Therefore, we aim to define a security metric for ICPS, which measures the level of security during the system design, tests, and integration as well as at runtime. For this, we try to focus on a semantic point of view, which on one hand has not been considered in security metric definitions yet, and on the other hand allows us to handle the complexity of SoS architectures. Furthermore, our approach allows combining the critical characteristics of an ICPS, like uncertainty, required reliability, multi-criticality and safety aspects.

2021-03-22
Vimercati, S. de Capitani di, Foresti, S., Paraboschi, S., Samarati, P..  2020.  Enforcing Corporate Governance's Internal Controls and Audit in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :453–461.
More and more organizations are today using the cloud for their business as a quite convenient alternative to in-house solutions for storing, processing, and managing data. Cloud-based solutions are then permeating almost all aspects of business organizations, resulting appealing also for functions that, already in-house, may result sensitive or security critical, and whose enforcement in the cloud requires then particular care. In this paper, we provide an approach for securely relying on cloud-based services for the enforcement of Internal Controls and Audit (ICA) functions for corporate governance. Our approach is based on the use of selective encryption and of tags to provide a level of self-protection to data and for enabling only authorized parties to access data and perform operations on them, providing privacy and integrity guarantees, as well as accountability and non-repudiation.
2020-12-28
Chaves, A., Moura, Í, Bernardino, J., Pedrosa, I..  2020.  The privacy paradigm : An overview of privacy in Business Analytics and Big Data. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.
In this New Age where information has an indispensable value for companies and data mining technologies are growing in the area of Information Technology, privacy remains a sensitive issue in the approach to the exploitation of the large volume of data generated and processed by companies. The way data is collected, handled and destined is not yet clearly defined and has been the subject of constant debate by several areas of activity. This literature review gives an overview of privacy in the era of Business Analytics and Big Data in different timelines, the opportunities and challenges faced, aiming to broaden discussions on a subject that deserves extreme attention and aims to show that, despite measures for data protection have been created, there is still a need to discuss the subject among the different parties involved in the process to achieve a positive ideal for both users and companies.
2020-12-02
Narang, S., Byali, M., Dayama, P., Pandit, V., Narahari, Y..  2019.  Design of Trusted B2B Market Platforms using Permissioned Blockchains and Game Theory. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :385—393.

Trusted collaboration satisfying the requirements of (a) adequate transparency and (b) preservation of privacy of business sensitive information is a key factor to ensure the success and adoption of online business-to-business (B2B) collaboration platforms. Our work proposes novel ways of stringing together game theoretic modeling, blockchain technology, and cryptographic techniques to build such a platform for B2B collaboration involving enterprise buyers and sellers who may be strategic. The B2B platform builds upon three ideas. The first is to use a permissioned blockchain with smart contracts as the technical infrastructure for building the platform. Second, the above smart contracts implement deep business logic which is derived using a rigorous analysis of a repeated game model of the strategic interactions between buyers and sellers to devise strategies to induce honest behavior from buyers and sellers. Third, we present a formal framework that captures the essential requirements for secure and private B2B collaboration, and, in this direction, we develop cryptographic regulation protocols that, in conjunction with the blockchain, help implement such a framework. We believe our work is an important first step in the direction of building a platform that enables B2B collaboration among strategic and competitive agents while maximizing social welfare and addressing the privacy concerns of the agents.

2020-11-20
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
2020-10-06
Li, Yue.  2019.  Finding Concurrency Exploits on Smart Contracts. 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :144—146.

Smart contracts have been widely used on Ethereum to enable business services across various application domains. However, they are prone to different forms of security attacks due to the dynamic and non-deterministic blockchain runtime environment. In this work, we highlighted a general miner-side type of exploit, called concurrency exploit, which attacks smart contracts via generating malicious transaction sequences. Moreover, we designed a systematic algorithm to automatically detect such exploits. In our preliminary evaluation, our approach managed to identify real vulnerabilities that cannot be detected by other tools in the literature.

2020-08-28
Malik, Vinita, Singh, Sukhdip.  2019.  Cloud, Big Data IoT: Risk Management. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :258—262.
The heart of research pumps for analyzing risks in today's competitive business environment where big, massive computations are performed on interconnected devices pervasively. Advanced computing environments i.e. Cloud, big data and Internet of things are taken under consideration for finding and analyzing business risks developed from evolutionary, interoperable and digital devices communications with massive volume of data generated. Various risks in advanced computational environment have been identified in this research and are provided with risks mitigation strategies. We have also focused on how risk management affects these environments and how that effect can be mitigated for software and business quality improvement.
2020-08-24
Thirumaran, M., Moshika, A., Padmanaban, R..  2019.  Hybrid Model for Web Application Vulnerability Assessment Using Decision Tree and Bayesian Belief Network. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–7.
In the existing situation, most of the business process are running through web applications. This helps the enterprises to grow their business efficiently which creates a good consumer relationship. But the main problem is that they failed to provide a vulnerable free environment. To overcome this issue in web applications, vulnerability assessment should be made periodically. They are many vulnerability assessment methodologies which occur earlier are not much proactive. So, machine learning is needed to provide a combined solution to determine vulnerability occurrence and percentage of vulnerability occurred in logical web pages. We use Decision Tree and Bayesian Belief Network (BBN) as a collective solution to find either vulnerability occur in web applications and the vulnerability occurred percentage on different logical web pages.
2020-08-14
Hussain, Fatima, Li, Weiyue, Noye, Brett, Sharieh, Salah, Ferworn, Alexander.  2019.  Intelligent Service Mesh Framework for API Security and Management. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0735—0742.
With the advancements in enterprise-level business development, the demand for new applications and services is overwhelming. For the development and delivery of such applications and services, enterprise businesses rely on Application Programming Interfaces (APIs). API management and classification is a cumbersome task considering the rapid increase in the number of APIs, and API to API calls. API Mashups, domain APIs and API service mesh are a few recommended techniques for ease of API creation, management, and monitoring. API service mesh is considered as one of the techniques in this regard, in which the service plane and the control plane are separated for improving efficiency as well as security. In this paper, we propose and implement a security framework for the creation of a secure API service mesh using Istio and Kubernetes. Afterwards, we propose an smart association model for automatic association of new APIs to already existing categories of service mesh. To the best of our knowledge, this smart association model is the first of its kind.
2020-08-07
Chandel, Sonali, Yan, Mengdi, Chen, Shaojun, Jiang, Huan, Ni, Tian-Yi.  2019.  Threat Intelligence Sharing Community: A Countermeasure Against Advanced Persistent Threat. 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). :353—359.
Advanced Persistent Threat (APT) having focused target along with advanced and persistent attacking skills under great concealment is a new trend followed for cyber-attacks. Threat intelligence helps in detecting and preventing APT by collecting a host of data and analyzing malicious behavior through efficient data sharing and guaranteeing the safety and quality of information exchange. For better protection, controlled access to intelligence information and a grading standard to revise the criteria in diagnosis for a security breach is needed. This paper analyses a threat intelligence sharing community model and proposes an improvement to increase the efficiency of sharing by rethinking the size and composition of a sharing community. Based on various external environment variables, it filters the low-quality shared intelligence by grading the trust level of a community member and the quality of a piece of intelligence. We hope that this research can fill in some security gaps to help organizations make a better decision in handling the ever-increasing and continually changing cyber-attacks.
2020-07-09
Fahrenkrog-Petersen, Stephan A., van der Aa, Han, Weidlich, Matthias.  2019.  PRETSA: Event Log Sanitization for Privacy-aware Process Discovery. 2019 International Conference on Process Mining (ICPM). :1—8.

Event logs that originate from information systems enable comprehensive analysis of business processes, e.g., by process model discovery. However, logs potentially contain sensitive information about individual employees involved in process execution that are only partially hidden by an obfuscation of the event data. In this paper, we therefore address the risk of privacy-disclosure attacks on event logs with pseudonymized employee information. To this end, we introduce PRETSA, a novel algorithm for event log sanitization that provides privacy guarantees in terms of k-anonymity and t-closeness. It thereby avoids disclosure of employee identities, their membership in the event log, and their characterization based on sensitive attributes, such as performance information. Through step-wise transformations of a prefix-tree representation of an event log, we maintain its high utility for discovery of a performance-annotated process model. Experiments with real-world data demonstrate that sanitization with PRETSA yields event logs of higher utility compared to methods that exploit frequency-based filtering, while providing the same privacy guarantees.

2020-04-17
Huang, Hua, Zhang, Yi-lai, Zhang, Min.  2019.  Research on Cloud Workflow Engine Supporting Three-Level Isolation and Privacy Protection. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :160—165.

With the development of cloud computing, cloud workflow systems are widely accepted by more and more enterprises and individuals (namely tenants). There exists mass tenant workflow instances running in cloud workflow systems. How to implement the three-level (i.e., data, performance, execution ) isolation and privacy protection among these tenant workflow instances is challenging. To address this issue, this paper presents a novel cloud workflow model supporting multi-tenants with privacy protection. With the presented model, a framework of cloud workflow engine based on the extended jBPM4 is proposed by adopting layered management thought, virtualization technology and sandbox mechanism. By extending the jBPM4 (java Business Process Management) engine, the prototype system of the proposed cloud workflow engine is implemented and applied in the ceramic cloud service platform (denoted as CCSP). The application effect demonstrates that our proposal can be used to implement the three-level isolation and privacy protection between mass various tenant workflow instances in cloud workflow systems.

2020-03-18
Camera, Giancarlo, Baglietto, Pierpaolo, Maresca, Massimo.  2019.  A Platform for Private and Controlled Spreadsheet Objects Sharing. 2019 IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC). :67–76.
Spreadsheets are widely used in industries for tabular data analysis, visualization and storage. Users often exchange spreadsheets' semi-structured data to collaborative analyze them. Recently, office suites integrated a software module that enables collaborative authoring of office files, including spreadsheets, to facilitate the sharing process. Typically spreadsheets collaborative authoring applications, like Google Sheets or Excel online, need to delocalize the entire file in public cloud storage servers. This choice is not secure for enterprise use because it exposes shared content to the risk of third party access. Moreover, available platforms usually provide coarse grained spreadsheet file sharing, where collaborators have access to all data stored inside a workbook and to all the spreadsheets' formulas used to manipulate those data. This approach limits users' possibilities to disclose only a small portion of tabular data and integrate data coming from different sources (spreadsheets or software platforms). For these reasons enterprise users prefer to control fine grained confidential data exchange and their updates manually through copy, paste, attach-to-email, extract-from-email operations. However unsupervised data sharing and circulation often leads to errors or, at the very least, to inconsistencies, data losses, and proliferation of multiple copies. We propose a model that gives business users a different level of spreadsheet data sharing control, privacy and management. Our approach enables collaborative analytics of tabular data focusing on fine grained spreadsheet data sharing instead of coarse grained file sharing. This solution works with a platform that implements an end to end encrypted protocol for sensitive data sharing that prevents third party access to confidential content. Data are never shared into public clouds but they are transferred encrypted among the administrative domains of collaborators. In this paper we describe the model and the implemented system that enable our solution. We focus on two enterprise use cases we implemented describing how we deployed our platform to speed up and optimize industry processes that involve spreadsheet usage.
2020-03-09
Tun, Hein, Lupin, Sergey, Than, Ba Hla, Nay Zaw Linn, Kyaw, Khaing, Min Thu.  2019.  Estimation of Information System Security Using Hybrid Simulation in AnyLogic. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1829–1834.
Nowadays the role of Information systems in our life has greatly increased, which has become one of the biggest challenges for citizens, organizations and governments. Every single day we are becoming more and more dependent on information and communication technology (ICT). A major goal of information security is to find the best ways to mitigate the risks. The context-role and perimeter protection approaches can reduce and prevent an unauthorized penetration to protected zones and information systems inside the zones. The result of this work can be useful for the security system analysis and optimization of their organizations.
PONGSRISOMCHAI, Sutthinee, Ngamsuriyaroj, Sudsanguan.  2019.  Automated IT Audit of Windows Server Access Control. 2019 21st International Conference on Advanced Communication Technology (ICACT). :539–544.

To protect sensitive information of an organization, we need to have proper access controls since several data breach incidents were happened because of broken access controls. Normally, the IT auditing process would be used to identify security weaknesses and should be able to detect any potential access control violations in advance. However, most auditing processes are done manually and not performed consistently since lots of resources are required; thus, the auditing is performed for quality assurance purposes only. This paper proposes an automated process to audit the access controls on the Windows server operating system. We define the audit checklist and use the controls defined in ISO/IEC 27002:2013 as a guideline for identifying audit objectives. In addition, an automated audit tool is developed for checking security controls against defined security policies. The results of auditing are the list of automatically generated passed and failed policies. If the auditing is done consistently and automatically, the intrusion incidents could be detected earlier and essential damages could be prevented. Eventually, it would help increase the reliability of the system.

2020-02-26
Padmanaban, R., Thirumaran, M., Sanjana, Victoria, Moshika, A..  2019.  Security Analytics For Heterogeneous Web. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.

In recent days, Enterprises are expanding their business efficiently through web applications which has paved the way for building good consumer relationship with its customers. The major threat faced by these enterprises is their inability to provide secure environments as the web applications are prone to severe vulnerabilities. As a result of this, many security standards and tools have been evolving to handle the vulnerabilities. Though there are many vulnerability detection tools available in the present, they do not provide sufficient information on the attack. For the long-term functioning of an organization, data along with efficient analytics on the vulnerabilities is required to enhance its reliability. The proposed model thus aims to make use of Machine Learning with Analytics to solve the problem in hand. Hence, the sequence of the attack is detected through the pattern using PAA and further the detected vulnerabilities are classified using Machine Learning technique such as SVM. Probabilistic results are provided in order to obtain numerical data sets which could be used for obtaining a report on user and application behavior. Dynamic and Reconfigurable PAA with SVM Classifier is a challenging task to analyze the vulnerabilities and impact of these vulnerabilities in heterogeneous web environment. This will enhance the former processing by analysis of the origin and the pattern of the attack in a more effective manner. Hence, the proposed system is designed to perform detection of attacks. The system works on the mitigation and prevention as part of the attack prediction.

2020-02-24
Ahmadi-Assalemi, Gabriela, al-Khateeb, Haider M., Epiphaniou, Gregory, Cosson, Jon, Jahankhani, Hamid, Pillai, Prashant.  2019.  Federated Blockchain-Based Tracking and Liability Attribution Framework for Employees and Cyber-Physical Objects in a Smart Workplace. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–9.
The systematic integration of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) into the supply chain to increase operational efficiency and quality has also introduced new complexities to the threat landscape. The myriad of sensors could increase data collection capabilities for businesses to facilitate process automation aided by Artificial Intelligence (AI) but without adopting an appropriate Security-by-Design framework, threat detection and response are destined to fail. The emerging concept of Smart Workplace incorporates many CPS (e.g. Robots and Drones) to execute tasks alongside Employees both of which can be exploited as Insider Threats. We introduce and discuss forensic-readiness, liability attribution and the ability to track moving Smart SPS Objects to support modern Digital Forensics and Incident Response (DFIR) within a defence-in-depth strategy. We present a framework to facilitate the tracking of object behaviour within Smart Controlled Business Environments (SCBE) to support resilience by enabling proactive insider threat detection. Several components of the framework were piloted in a company to discuss a real-life case study and demonstrate anomaly detection and the emerging of behavioural patterns according to objects' movement with relation to their job role, workspace position and nearest entry or exit. The empirical data was collected from a Bluetooth-based Proximity Monitoring Solution. Furthermore, a key strength of the framework is a federated Blockchain (BC) model to achieve forensic-readiness by establishing a digital Chain-of-Custody (CoC) and a collaborative environment for CPS to qualify as Digital Witnesses (DW) to support post-incident investigations.
2020-02-17
Hadar, Ethan, Hassanzadeh, Amin.  2019.  Big Data Analytics on Cyber Attack Graphs for Prioritizing Agile Security Requirements. 2019 IEEE 27th International Requirements Engineering Conference (RE). :330–339.

In enterprise environments, the amount of managed assets and vulnerabilities that can be exploited is staggering. Hackers' lateral movements between such assets generate a complex big data graph, that contains potential hacking paths. In this vision paper, we enumerate risk-reduction security requirements in large scale environments, then present the Agile Security methodology and technologies for detection, modeling, and constant prioritization of security requirements, agile style. Agile Security models different types of security requirements into the context of an attack graph, containing business process targets and critical assets identification, configuration items, and possible impacts of cyber-attacks. By simulating and analyzing virtual adversary attack paths toward cardinal assets, Agile Security examines the business impact on business processes and prioritizes surgical requirements. Thus, handling these requirements backlog that are constantly evaluated as an outcome of employing Agile Security, gradually increases system hardening, reduces business risks and informs the IT service desk or Security Operation Center what remediation action to perform next. Once remediated, Agile Security constantly recomputes residual risk, assessing risk increase by threat intelligence or infrastructure changes versus defender's remediation actions in order to drive overall attack surface reduction.

2020-02-10
Juszczyszyn, Krzysztof, Kolaczek, Grzegorz.  2019.  Complex Networks Monitoring and Security and Fraud Detection for Enterprises. 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :124–125.
The purpose of Complex Networks Monitoring and Security and Fraud Detection for Enterprises - CoNeSec track is two-fold: Firstly, the track offers a forum for scientists and engineers to exchange ideas on novel analytical techniques using network log data. Secondly, the track has a thematic focus on emerging technology for complex network, security and privacy. We seek publications on all theoretical and practical work in areas related to the theme above.
2020-01-21
Novikova, Evgenia, Bekeneva, Yana, Shorov, Andrey.  2019.  The Location-Centric Approach to Employee's Interaction Pattern Detection. 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :373–378.
The task of the insider threat detection is one of the most sophisticated problems of the information security. The analysis of the logs of the access control system may reveal on how employees move and interact providing thus better understanding on how personnel observe security policies and established business processes. The paper presents an approach to the detection of the location-centric employees' interaction patterns. The authors propose the formal definition of the interaction patterns and present the visualization-driven technique to the extraction of the patterns from the data when any prior information about existing interaction routine and procedures is not available. The proposed approach is demonstrated on the data set provided within VAST MiniChallenge-2 2016 contest.
2020-01-02
Shabanov, Boris, Sotnikov, Alexander, Palyukh, Boris, Vetrov, Alexander, Alexandrova, Darya.  2019.  Expert System for Managing Policy of Technological Security in Uncertainty Conditions: Architectural, Algorithmic, and Computing Aspects. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1716–1721.

The paper discusses the architectural, algorithmic and computing aspects of creating and operating a class of expert system for managing technological safety of an enterprise, in conditions of a large flow of diagnostic variables. The algorithm for finding a faulty technological chain uses expert information, formed as a set of evidence on the influence of diagnostic variables on the correctness of the technological process. Using the Dempster-Schafer trust function allows determining the overall probability measure on subsets of faulty process chains. To combine different evidence, the orthogonal sums of the base probabilities determined for each evidence are calculated. The procedure described above is converted into the rules of the knowledge base production. The description of the developed prototype of the expert system, its architecture, algorithmic and software is given. The functionality of the expert system and configuration tools for a specific type of production are under discussion.

2019-12-02
Torkura, Kennedy A., Sukmana, Muhammad I.H., Kayem, Anne V.D.M., Cheng, Feng, Meinel, Christoph.  2018.  A Cyber Risk Based Moving Target Defense Mechanism for Microservice Architectures. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :932–939.
Microservice Architectures (MSA) structure applications as a collection of loosely coupled services that implement business capabilities. The key advantages of MSA include inherent support for continuous deployment of large complex applications, agility and enhanced productivity. However, studies indicate that most MSA are homogeneous, and introduce shared vulnerabilites, thus vulnerable to multi-step attacks, which are economics-of-scale incentives to attackers. In this paper, we address the issue of shared vulnerabilities in microservices with a novel solution based on the concept of Moving Target Defenses (MTD). Our mechanism works by performing risk analysis against microservices to detect and prioritize vulnerabilities. Thereafter, security risk-oriented software diversification is employed, guided by a defined diversification index. The diversification is performed at runtime, leveraging both model and template based automatic code generation techniques to automatically transform programming languages and container images of the microservices. Consequently, the microservices attack surfaces are altered thereby introducing uncertainty for attackers while reducing the attackability of the microservices. Our experiments demonstrate the efficiency of our solution, with an average success rate of over 70% attack surface randomization.
2019-10-28
Trunov, Artem S., Voronova, Lilia I., Voronov, Vyacheslav I., Ayrapetov, Dmitriy P..  2018.  Container Cluster Model Development for Legacy Applications Integration in Scientific Software System. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :815–819.
Feature of modern scientific information systems is their integration with computing applications, providing distributed computer simulation and intellectual processing of Big Data using high-efficiency computing. Often these software systems include legacy applications in different programming languages, with non-standardized interfaces. To solve the problem of applications integration, containerization systems are using that allow to configure environment in the shortest time to deploy software system. However, there are no such systems for computer simulation systems with large number of nodes. The article considers the actual task of combining containers into a cluster, integrating legacy applications to manage the distributed software system MD-SLAG-MELT v.14, which supports high-performance computing and visualization of the computer experiments results. Testing results of the container cluster including automatic load sharing module for MD-SLAG-MELT system v.14. are given.