Visible to the public Biblio

Filters: Keyword is loT  [Clear All Filters]
2023-02-17
Dreyer, Julian, Tönjes, Ralf, Aschenbruck, Nils.  2022.  Decentralizing loT Public- Key Storage using Distributed Ledger Technology. 2022 International Wireless Communications and Mobile Computing (IWCMC). :172–177.
The secure Internet of Things (loT) increasingly relies on digital cryptographic signatures which require a private signature and public verification key. By their intrinsic nature, public keys are meant to be accessible to any interested party willing to verify a given signature. Thus, the storing of such keys is of great concern, since an adversary shall not be able to tamper with the public keys, e.g., on a local filesystem. Commonly used public-key infrastructures (PKIs), which handle the key distribution and storage, are not feasible in most use-cases, due to their resource intensity and high complexity. Thus, the general storing of the public verification keys is of notable interest for low-resource loT networks. By using the Distributed Ledger Technology (DLT), this paper proposes a decentralized concept for storing public signature verification keys in a tamper-resistant, secure, and resilient manner. By combining lightweight public-key exchange protocols with the proposed approach, the storing of verification keys becomes scalable and especially suitable for low-resource loT devices. This paper provides a Proof-of-Concept implementation of the DLT public-key store by extending our previously proposed NFC-Key Exchange (NFC-KE) protocol with a decentralized Hyperledger Fabric public-key store. The provided performance analysis shows that by using the decentralized keystore, the NFC- KE protocol gains an increased tamper resistance and overall system resilience while also showing expected performance degradations with a low real-world impact.
ISSN: 2376-6506
2021-10-12
Tavakolan, Mona, Faridi, Ismaeel A..  2020.  Applying Privacy-Aware Policies in IoT Devices Using Privacy Metrics. 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI). :1–5.
In recent years, user's privacy has become an important aspect in the development of Internet of Things (IoT) devices. However, there has been comparatively little research so far that aims to understanding user's privacy in connection with IoT. Many users are worried about protecting their personal information, which may be gathered by IoT devices. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value.
2019-03-11
Mehta, R., Parmar, M. M..  2018.  Trust based mechanism for Securing IoT Routing Protocol RPL against Wormhole amp;Grayhole Attacks. 2018 3rd International Conference for Convergence in Technology (I2CT). :1–6.
Internet of Things is attracting a lot of interest in the modern world and has become a part of daily life leading to a large scale of distribution of Low power and Lossy Networks (LLN). For such networks constrained by low power and storage, IETF has proposed RPL an open standard routing protocol. However RPL protocol is exposed to a number of attacks which may degrade the performance and resources of the network leading to incorrect output. In this paper, to address Wormhole and Grayhole attack we propose a light weight Trust based mechanism. The proposed method uses direct trust which is computed based on node properties and Indirect Trust which is based on opinion of the neighboring nodes. The proposed method is energy friendly and does not impose excessive overhead on network traffic.