Visible to the public Biblio

Filters: Keyword is correlation methods  [Clear All Filters]
2021-02-23
Kaur, S., Singh, S..  2020.  Highly Secured all Optical DIM Codes using AND Gate. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :64—68.
Optical Code Division Multiple Access (OCDMA) is an inevitable innovation to cope up with the impediments of regularly expanding information traffic and numerous user accesses in optical systems. In Spectral Amplitude Coding (SAC)-OCDMA systems cross correlation and Multiple Access Interference (MAI) are utmost concerns. For eliminating the cross correlation, reducing the MAI and to enhance the security, in this work, all optical Diagonal Identity Matrices codes (DIM) with Zero Cross-Correlation (ZCC) and optical gating are presented. Chip rate of the proposed work is 0.03 ns and total 60 users are considered with semiconductor optical amplifier based AND operation. Effects of optical gating are analyzed in the presence/absence of eavesdropper in terms of Q factor and received extinction ratio. Proposed system has advantages for service provider because this is mapping free technique and can be easily designed for large number of users.
2021-02-15
Karthikeyan, S. Paramasivam, El-Razouk, H..  2020.  Horizontal Correlation Analysis of Elliptic Curve Diffie Hellman. 2020 3rd International Conference on Information and Computer Technologies (ICICT). :511–519.
The world is facing a new revolutionary technology transition, Internet of things (IoT). IoT systems requires secure connectivity of distributed entities, including in-field sensors. For such external devices, Side Channel Analysis poses a potential threat as it does not require complete knowledge about the crypto algorithm. In this work, we perform Horizontal Correlation Power Analysis (HCPA) which is a type of Side Channel Analysis (SCA) over the Elliptic Curve Diffie Hellman (ECDH) key exchange protocol. ChipWhisperer (CW) by NewAE Technologies is an open source toolchain which is utilized to perform the HCPA by using CW toolchain. To best of our knowledge, this is the first attempt to implemented ECDH on Artix-7 FPGA for HCPA. We compare our correlation results with the results from AES -128 bits provided by CW. Our point of attack is the Double and Add algorithm which is used to perform Scalar multiplication in ECC. We obtain a maximum correlation of 7% for the key guess using the HCPA. We also discuss about the possible cause for lower correlation and few potentials ways to improve it. In Addition to HCPA we also perform Simple Power Analysis (SPA) (visual) for ECDH, to guess the trailing zeros in the 128-bit secret key for different power traces.
2020-10-26
George, Chinnu Mary, Luke Babu, Sharon.  2019.  A Scalable Correlation Clustering strategy in Location Privacy for Wireless Sensor Networks against a Universal Adversary. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :1–3.
Wireless network sensors are outsized number of pocket sized sensors deployed in the area under surveillance. The sensor network is very sensitive to unattended and remote Environment with a wide variety of applications in the agriculture, health, industry there a lot of challenges being faced with respect to the energy, mobility, security. The paper presents with regard to the context based surrounding information which has location privacy to the source node against an adversary who sees the network at a whole so a correlation strategy is proposed for providing the privacy.
2020-03-23
Manucom, Emraida Marie M., Gerardo, Bobby D., Medina, Ruji P..  2019.  Analysis of Key Randomness in Improved One-Time Pad Cryptography. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :11–16.
In cryptography, one-time pad (OTP) is claimed to be the perfect secrecy algorithm in several works if all of its features are applied correctly. Its secrecy depends mostly on random keys, which must be truly random and unpredictable. Random number generators are used in key generation. In Psuedo Random Number Generator (PRNG), the possibility of producing numbers that are predictable and repeated exists. In this study, a proposed method using True Random Number Generator (TRNG) and Fisher-Yates shuffling algorithm are implemented to generate random keys for OTP. Frequency (monobit) test, frequency test within a block, and runs tests are performed and showed that the proposed method produces more random keys. Sufficient confusion and diffusion properties are obtained using Pearson correlation analysis.
2020-03-04
Yao, Li, Peng, Linning, Li, Guyue, Fu, Hua, Hu, Aiqun.  2019.  A Simulation and Experimental Study of Channel Reciprocity in TDD and FDD Wiretap Channels. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :113–117.

In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.

2020-02-17
Zamula, Alexander, Rassomakhin, Sergii, Krasnobayev, Victor, Morozov, Vladyslav.  2019.  Synthesis of Discrete Complex Nonlinear Signals with Necessary Properties of Correlation Functions. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). :999–1002.
The main information and communication systems (ICS) effectiveness parameters are: reliability, resiliency, network bandwidth, service quality, profitability and cost, malware protection, information security, etc. Most modern ICS refers to multiuser systems, which implement the most promising method of distributing subscribers (users), namely, the code distribution, at which, subscribers are provided with appropriate forms of discrete sequences (signatures). Since in multiuser systems, channels code division is based on signal difference, then the ICS construction and systems performance indicators are determined by the chosen signals properties. Distributed spectrum technology is the promising direction of information security for telecommunication systems. Currently used data generation and processing methods, as well as the broadband signal classes used as a physical data carrier, are not enough for the necessary level of information security (information secrecy, imitation resistance) as well as noise immunity (impedance reception, structural secrecy) of the necessary (for some ICS applications). In this case, discrete sequences (DS) that are based on nonlinear construction rules and have improved correlation, ensemble and structural properties should be used as DS that extend the spectrum (manipulate carrier frequency). In particular, with the use of such signals as the physical carrier of information or synchronization signals, the time expenditures on the disclosure of the signal structure used are increasing and the setting of "optima", in terms of the counteracting station, obstacles becomes problematic. Complex signals obtained on such sequences basis have structural properties, similar to random (pseudorandom) sequences, as well as necessary correlation and ensemble properties. For designing signals for applications applied for measuring delay time, signal detecting, synchronizing stations and etc, side-lobe levels of autocorrelation function (ACF) minimization is essential. In this paper, the problem of optimizing the synthesis of nonlinear discrete sequences, which have improved ensemble, structural and autocorrelation properties, is formulated and solved. The use of nonlinear discrete signals, which are formed on the basis of such sequences, will provide necessary values for impedance protection, structural and information secrecy of ICS operation. Increased requirements for ICS information security, formation and performance data in terms of internal and external threats (influences), determine objectively existing technical and scientific controversy to be solved is goal of this work.The paper presents the results of solving the actual problem of performance indicators improvements for information and communication systems, in particular secrecy, information security and noise immunity with interfering influences, based on the nonlinear discrete cryptographic signals (CS) new classes synthesis with the necessary properties.
2020-01-07
Hussain, Syed Saiq, Sohail Ibrahim, Muhammad, Mir, Syed Zain, Yasin, Sajid, Majeed, Muhammad Kashif, Ghani, Azfar.  2018.  Efficient Video Encryption Using Lightweight Cryptography Algorithm. 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). :1-6.

The natural redundancy in video data due to its spatio-temporal correlation of neighbouring pixels require highly complex encryption process to successfully cipher the data. Conventional encryption methods are based on lengthy keys and higher number of rounds which are inefficient for low powered, small battery operated devices. Motivated by the success of lightweight encryption methods specially designed for IoT environment, herein an efficient method for video encryption is proposed. The proposed technique is based on a recently proposed encryption algorithm named Secure IoT (SIT), which utilizes P and Q functions of the KHAZAD cipher to achieve high encryption at low computation cost. Extensive simulations are performed to evaluate the efficacy of the proposed method and results are compared with Secure Force (SF-64) cipher. Under all conditions the proposed method achieved significantly improved results.

2019-06-10
Majumder, S., Bhattacharyya, D..  2018.  Mitigating wormhole attack in MANET using absolute deviation statistical approach. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :317–320.

MANET is vulnerable to so many attacks like Black hole, Wormhole, Jellyfish, Dos etc. Attackers can easily launch Wormhole attack by faking a route from original within network. In this paper, we propose an algorithm on AD (Absolute Deviation) of statistical approach to avoid and prevent Wormhole attack. Absolute deviation covariance and correlation take less time to detect Wormhole attack than classical one. Any extra necessary conditions, like GPS are not needed in proposed algorithms. From origin to destination, a fake tunnel is created by wormhole attackers, which is a link with good amount of frequency level. A false idea is created by this, that the source and destination of the path are very nearby each other and will take less time. But the original path takes more time. So it is necessary to calculate the time taken to avoid and prevent Wormhole attack. Better performance by absolute deviation technique than AODV is proved by simulation, done by MATLAB simulator for wormhole attack. Then the packet drop pattern is also measured for Wormholes using Absolute Deviation Correlation Coefficient.

2019-03-15
Amosov, O. S., Amosova, S. G., Muller, N. V..  2018.  Identification of Potential Risks to System Security Using Wavelet Analysis, the Time-and-Frequency Distribution Indicator of the Time Series and the Correlation Analysis of Wavelet-Spectra. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1-6.

To identify potential risks to the system security presented by time series it is offered to use wavelet analysis, the indicator of time-and-frequency distribution, the correlation analysis of wavelet-spectra for receiving rather complete range of data about the process studied. The indicator of time-and-frequency localization of time series was proposed allowing to estimate the speed of non-stationary changing. The complex approach is proposed to use the wavelet analysis, the time-and-frequency distribution of time series and the wavelet spectra correlation analysis; this approach contributes to obtaining complete information on the studied phenomenon both in numerical terms, and in the form of visualization for identifying and predicting potential system security threats.

2018-04-04
Parchami, M., Bashbaghi, S., Granger, E..  2017.  CNNs with cross-correlation matching for face recognition in video surveillance using a single training sample per person. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.

In video surveillance, face recognition (FR) systems seek to detect individuals of interest appearing over a distributed network of cameras. Still-to-video FR systems match faces captured in videos under challenging conditions against facial models, often designed using one reference still per individual. Although CNNs can achieve among the highest levels of accuracy in many real-world FR applications, state-of-the-art CNNs that are suitable for still-to-video FR, like trunk-branch ensemble (TBE) CNNs, represent complex solutions for real-time applications. In this paper, an efficient CNN architecture is proposed for accurate still-to-video FR from a single reference still. The CCM-CNN is based on new cross-correlation matching (CCM) and triplet-loss optimization methods that provide discriminant face representations. The matching pipeline exploits a matrix Hadamard product followed by a fully connected layer inspired by adaptive weighted cross-correlation. A triplet-based training approach is proposed to optimize the CCM-CNN parameters such that the inter-class variations are increased, while enhancing robustness to intra-class variations. To further improve robustness, the network is fine-tuned using synthetically-generated faces based on still and videos of non-target individuals. Experiments on videos from the COX Face and Chokepoint datasets indicate that the CCM-CNN can achieve a high level of accuracy that is comparable to TBE-CNN and HaarNet, but with a significantly lower time and memory complexity. It may therefore represent the better trade-off between accuracy and complexity for real-time video surveillance applications.

2015-05-06
Jian Sun, Haitao Liao, Upadhyaya, B.R..  2014.  A Robust Functional-Data-Analysis Method for Data Recovery in Multichannel Sensor Systems. Cybernetics, IEEE Transactions on. 44:1420-1431.

Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
 

Jian Sun, Haitao Liao, Upadhyaya, B.R..  2014.  A Robust Functional-Data-Analysis Method for Data Recovery in Multichannel Sensor Systems. Cybernetics, IEEE Transactions on. 44:1420-1431.

Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
 

2015-05-05
Hang Shao, Japkowicz, N., Abielmona, R., Falcon, R..  2014.  Vessel track correlation and association using fuzzy logic and Echo State Networks. Evolutionary Computation (CEC), 2014 IEEE Congress on. :2322-2329.

Tracking moving objects is a task of the utmost importance to the defence community. As this task requires high accuracy, rather than employing a single detector, it has become common to use multiple ones. In such cases, the tracks produced by these detectors need to be correlated (if they belong to the same sensing modality) or associated (if they were produced by different sensing modalities). In this work, we introduce Computational-Intelligence-based methods for correlating and associating various contacts and tracks pertaining to maritime vessels in an area of interest. Fuzzy k-Nearest Neighbours will be used to conduct track correlation and Fuzzy C-Means clustering will be applied for association. In that way, the uncertainty of the track correlation and association is handled through fuzzy logic. To better model the state of the moving target, the traditional Kalman Filter will be extended using an Echo State Network. Experimental results on five different types of sensing systems will be discussed to justify the choices made in the development of our approach. In particular, we will demonstrate the judiciousness of using Fuzzy k-Nearest Neighbours and Fuzzy C-Means on our tracking system and show how the extension of the traditional Kalman Filter by a recurrent neural network is superior to its extension by other methods.

2015-05-01
Guang Hua, Goh, J., Thing, V.L.L..  2014.  A Dynamic Matching Algorithm for Audio Timestamp Identification Using the ENF Criterion. Information Forensics and Security, IEEE Transactions on. 9:1045-1055.

The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.