Visible to the public Biblio

Filters: Keyword is Grid Security  [Clear All Filters]
2021-05-20
Neema, Himanshu, Sztipanovits, Janos, Hess, David J., Lee, Dasom.  2020.  TE-SAT: Transactive Energy Simulation and Analysis Toolsuite. 2020 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—20.

Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.

2020-07-24
Obert, James, Chavez, Adrian.  2019.  Graph-Based Event Classification in Grid Security Gateways. 2019 Second International Conference on Artificial Intelligence for Industries (AI4I). :63—66.
In recent years the use of security gateways (SG) located within the electrical grid distribution network has become pervasive. SGs in substations and renewable distributed energy resource aggregators (DERAs) protect power distribution control devices from cyber and cyber-physical attacks. When encrypted communications within a DER network is used, TCP/IP packet inspection is restricted to packet header behavioral analysis which in most cases only allows the SG to perform anomaly detection of blocks of time-series data (event windows). Packet header anomaly detection calculates the probability of the presence of a threat within an event window, but fails in such cases where the unreadable encrypted payload contains the attack content. The SG system log (syslog) is a time-series record of behavioral patterns of network users and processes accessing and transferring data through the SG network interfaces. Threatening behavioral pattern in the syslog are measurable using both anomaly detection and graph theory. In this paper it will be shown that it is possible to efficiently detect the presence of and classify a potential threat within an SG syslog using light-weight anomaly detection and graph theory.
2020-07-16
Rudolph, Hendryk, Lan, Tian, Strehl, Konrad, He, Qinwei, Lan, Yuanliang.  2019.  Simulating the Efficiency of Thermoelectrical Generators for Sensor Nodes. 2019 4th IEEE Workshop on the Electronic Grid (eGRID). :1—6.

In order to be more environmentally friendly, a lot of parts and aspects of life become electrified to reduce the usage of fossil fuels. This can be seen in the increased number of electrical vehicles in everyday life. This of course only makes a positive impact on the environment, if the electricity is produced environmentally friendly and comes from renewable sources. But when the green electrical power is produced, it still needs to be transported to where it's needed, which is not necessarily near the production site. In China, one of the ways to do this transport is to use High Voltage Direct Current (HVDC) technology. This of course means, that the current has to be converted to DC before being transported to the end user. That implies that the converter stations are of great importance for the grid security. Therefore, a precise monitoring of the stations is necessary. Ideally, this could be accomplished with wireless sensor nodes with an autarkic energy supply. A role in this energy supply could be played by a thermoelectrical generator (TEG). But to assess the power generated in the specific environment, a simulation would be highly desirable, to evaluate the power gained from the temperature difference in the converter station. This paper proposes a method to simulate the generated power by combining a model for the generator with a Computational Fluid Dynamics (CFD) model converter.

2020-02-17
Moquin, S. J., Kim, SangYun, Blair, Nicholas, Farnell, Chris, Di, Jia, Mantooth, H. Alan.  2019.  Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.
2019-03-22
Obert, J., Chavez, A., Johnson, J..  2018.  Behavioral Based Trust Metrics and the Smart Grid. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1490-1493.

To ensure reliable and predictable service in the electrical grid it is important to gauge the level of trust present within critical components and substations. Although trust throughout a smart grid is temporal and dynamically varies according to measured states, it is possible to accurately formulate communications and service level strategies based on such trust measurements. Utilizing an effective set of machine learning and statistical methods, it is shown that establishment of trust levels between substations using behavioral pattern analysis is possible. It is also shown that the establishment of such trust can facilitate simple secure communications routing between substations.