Visible to the public Biblio

Filters: Keyword is Terrorism  [Clear All Filters]
2023-07-21
Almutairi, Mishaal M., Apostolopoulou, Dimitra, Halikias, George, Abi Sen, Adnan Ahmed, Yamin, Mohammad.  2022.  Enhancing Privacy and Security in Crowds using Fog Computing. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :57—62.
Thousands of crowded events take place every year. Often, management does not properly implement and manage privacy and security of data of the participants and personnel of the events. Crowds are also prone to significant security issues and become vulnerable to terrorist attacks. The aim of this paper is to propose a privacy and security framework for large, crowded events like the Hajj, Kumbh, Arba'een, and many sporting events and musical concerts. The proposed framework uses the latest technologies including Internet of Things, and Fog computing, especially in the Location based Services environments. The proposed framework can also be adapted for many other scenarios and situations.
2023-06-02
Abdellatif, Tamer Mohamed, Said, Raed A., Ghazal, Taher M..  2022.  Understanding Dark Web: A Systematic Literature Review. 2022 International Conference on Cyber Resilience (ICCR). :1—10.

Web evolution and Web 2.0 social media tools facilitate communication and support the online economy. On the other hand, these tools are actively used by extremist, terrorist and criminal groups. These malicious groups use these new communication channels, such as forums, blogs and social networks, to spread their ideologies, recruit new members, market their malicious goods and raise their funds. They rely on anonymous communication methods that are provided by the new Web. This malicious part of the web is called the “dark web”. Dark web analysis became an active research area in the last few decades, and multiple research studies were conducted in order to understand our enemy and plan for counteract. We have conducted a systematic literature review to identify the state-of-art and open research areas in dark web analysis. We have filtered the available research papers in order to obtain the most relevant work. This filtration yielded 28 studies out of 370. Our systematic review is based on four main factors: the research trends used to analyze dark web, the employed analysis techniques, the analyzed artifacts, and the accuracy and confidence of the available work. Our review results have shown that most of the dark web research relies on content analysis. Also, the results have shown that forum threads are the most analyzed artifacts. Also, the most significant observation is the lack of applying any accuracy metrics or validation techniques by most of the relevant studies. As a result, researchers are advised to consider using acceptance metrics and validation techniques in their future work in order to guarantee the confidence of their study results. In addition, our review has identified some open research areas in dark web analysis which can be considered for future research work.

2023-03-17
Raj, Ankit, Somani, Sunil B..  2022.  Predicting Terror Attacks Using Neo4j Sandbox and Machine Learning Algorithms. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–6.
Terrorism, and radicalization are major economic, political, and social issues faced by the world in today's era. The challenges that governments and citizens face in combating terrorism are growing by the day. Artificial intelligence, including machine learning and deep learning, has shown promising results in predicting terrorist attacks. In this paper, we attempted to build a machine learning model to predict terror activities using a global terrorism database in both relational and graphical forms. Using the Neo4j Sandbox, you can create a graph database from a relational database. We used the node2vec algorithm from Neo4j Sandbox's graph data science library to convert the high-dimensional graph to a low-dimensional vector form. In order to predict terror activities, seven machine learning models were used, and the performance parameters that were calculated were accuracy, precision, recall, and F1 score. According to our findings, the Logistic Regression model was the best performing model which was able to classify the dataset with an accuracy of 0.90, recall of 0.94 precision of 0.93, and an F1 score of 0.93.
ISSN: 2771-1358
2023-02-03
Philomina, Josna, Fahim Fathima, K A, Gayathri, S, Elias, Glory Elizabeth, Menon, Abhinaya A.  2022.  A comparitative study of machine learning models for the detection of Phishing Websites. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–7.
Global cybersecurity threats have grown as a result of the evolving digital transformation. Cybercriminals have more opportunities as a result of digitization. Initially, cyberthreats take the form of phishing in order to gain confidential user credentials.As cyber-attacks get more sophisticated and sophisticated, the cybersecurity industry is faced with the problem of utilising cutting-edge technology and techniques to combat the ever-present hostile threats. Hackers use phishing to persuade customers to grant them access to a company’s digital assets and networks. As technology progressed, phishing attempts became more sophisticated, necessitating the development of tools to detect phishing.Machine learning is unsupervised one of the most powerful weapons in the fight against terrorist threats. The features used for phishing detection, as well as the approaches employed with machine learning, are discussed in this study.In this light, the study’s major goal is to propose a unique, robust ensemble machine learning model architecture that gives the highest prediction accuracy with the lowest error rate, while also recommending a few alternative robust machine learning models.Finally, the Random forest algorithm attained a maximum accuracy of 96.454 percent. But by implementing a hybrid model including the 3 classifiers- Decision Trees,Random forest, Gradient boosting classifiers, the accuracy increases to 98.4 percent.
2022-06-09
Ali, Jokha.  2021.  Intrusion Detection Systems Trends to Counteract Growing Cyber-Attacks on Cyber-Physical Systems. 2021 22nd International Arab Conference on Information Technology (ACIT). :1–6.
Cyber-Physical Systems (CPS) suffer from extendable vulnerabilities due to the convergence of the physical world with the cyber world, which makes it victim to a number of sophisticated cyber-attacks. The motives behind such attacks range from criminal enterprises to military, economic, espionage, political, and terrorism-related activities. Many governments are more concerned than ever with securing their critical infrastructure. One of the effective means of detecting threats and securing their infrastructure is the use of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). A number of studies have been conducted and proposed to assess the efficacy and effectiveness of IDS through the use of self-learning techniques, especially in the Industrial Control Systems (ICS) era. This paper investigates and analyzes the utilization of IDS systems and their proposed solutions used to enhance the effectiveness of such systems for CPS. The targeted data extraction was from 2011 to 2021 from five selected sources: IEEE, ACM, Springer, Wiley, and ScienceDirect. After applying the inclusion and exclusion criteria, 20 primary studies were selected from a total of 51 studies in the field of threat detection in CPS, ICS, SCADA systems, and the IoT. The outcome revealed the trends in recent research in this area and identified essential techniques to improve detection performance, accuracy, reliability, and robustness. In addition, this study also identified the most vulnerable target layer for cyber-attacks in CPS. Various challenges, opportunities, and solutions were identified. The findings can help scholars in the field learn about how machine learning (ML) methods are used in intrusion detection systems. As a future direction, more research should explore the benefits of ML to safeguard cyber-physical systems.
2022-06-06
Hung, Benjamin W.K., Muramudalige, Shashika R., Jayasumana, Anura P., Klausen, Jytte, Libretti, Rosanne, Moloney, Evan, Renugopalakrishnan, Priyanka.  2019.  Recognizing Radicalization Indicators in Text Documents Using Human-in-the-Loop Information Extraction and NLP Techniques. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
Among the operational shortfalls that hinder law enforcement from achieving greater success in preventing terrorist attacks is the difficulty in dynamically assessing individualized violent extremism risk at scale given the enormous amount of primarily text-based records in disparate databases. In this work, we undertake the critical task of employing natural language processing (NLP) techniques and supervised machine learning models to classify textual data in analyst and investigator notes and reports for radicalization behavioral indicators. This effort to generate structured knowledge will build towards an operational capability to assist analysts in rapidly mining law enforcement and intelligence databases for cues and risk indicators. In the near-term, this effort also enables more rapid coding of biographical radicalization profiles to augment a research database of violent extremists and their exhibited behavioral indicators.
2022-04-26
Liu, Xutao, Li, Qixiang.  2021.  Asymmetric Analysis of Anti-Terrorist Operations and Demand for Light Weapons under the Condition of Informationization. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1152–1155.

Asymmetric warfare and anti-terrorist war have become a new style of military struggle in the new century, which will inevitably have an important impact on the military economy of various countries and catalyze the innovation climax of military logistics theory and practice. The war in the information age is the confrontation between systems, and “comprehensive integration” is not only the idea of information war ability construction, but also the idea of deterrence ability construction in the information age. Looking at the local wars under the conditions of modern informationization, it is not difficult to see that the status and role of light weapons and equipment have not decreased, on the contrary, higher demands have been put forward for their combat performance. From a forward-looking perspective, based on our army's preparation and logistics support for future asymmetric operations and anti-terrorist military struggle, this strategic issue is discussed in depth.

2022-04-12
Mahor, Vinod, Rawat, Romil, Kumar, Anil, Chouhan, Mukesh, Shaw, Rabindra Nath, Ghosh, Ankush.  2021.  Cyber Warfare Threat Categorization on CPS by Dark Web Terrorist. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). :1—6.
The Industrial Internet of Things (IIoT) also referred as Cyber Physical Systems (CPS) as critical elements, expected to play a key role in Industry 4.0 and always been vulnerable to cyber-attacks and vulnerabilities. Terrorists use cyber vulnerability as weapons for mass destruction. The dark web's strong transparency and hard-to-track systems offer a safe haven for criminal activity. On the dark web (DW), there is a wide variety of illicit material that is posted regularly. For supervised training, large-scale web pages are used in traditional DW categorization. However, new study is being hampered by the impossibility of gathering sufficiently illicit DW material and the time spent manually tagging web pages. We suggest a system for accurately classifying criminal activity on the DW in this article. Rather than depending on the vast DW training package, we used authorized regulatory to various types of illicit activity for training Machine Learning (ML) classifiers and get appreciable categorization results. Espionage, Sabotage, Electrical power grid, Propaganda and Economic disruption are the cyber warfare motivations and We choose appropriate data from the open source links for supervised Learning and run a categorization experiment on the illicit material obtained from the actual DW. The results shows that in the experimental setting, using TF-IDF function extraction and a AdaBoost classifier, we were able to achieve an accuracy of 0.942. Our method enables the researchers and System authoritarian agency to verify if their DW corpus includes such illicit activity depending on the applicable rules of the illicit categories they are interested in, allowing them to identify and track possible illicit websites in real time. Because broad training set and expert-supplied seed keywords are not required, this categorization approach offers another option for defining illicit activities on the DW.
2022-02-04
Roy, Vishwajit, Noureen, Subrina Sultana, Atique, Sharif, Bayne, Stephen, Giesselmann, Michael.  2021.  Intrusion Detection from Synchrophasor Data propagation using Cyber Physical Platform. 2021 IEEE Conference on Technologies for Sustainability (SusTech). :1–5.
Some of the recent reports show that Power Grid is a target of attack and gradually the need for understanding the security of Grid network is getting a prime focus. The Department of Homeland Security has imposed focus on Cyber Threats on Power Grid in their "Cyber Security Strategy,2018" [1] . DHS has focused on innovations to manage risk attacks on Power System based national resources. Power Grid is a cyber physical system which consists of power flow and data transmission. The important part of a microgrid is the two-way power flow which makes the system complex on monitoring and control. In this paper, we have tried to study different types of attacks which change the data propagation of Synchrophasor, network communication interruption behavior and find the data propagation scenario due to attack. The focus of the paper is to develop a platform for Synchrophasor based data network attack study which is a part of Microgrid design. Different types of intrusion models were studied to observe change in Synchrophasor data pattern which will help for further prediction to improve Microgrid resiliency for different types of cyber-attack.
2021-01-15
Pete, I., Hughes, J., Chua, Y. T., Bada, M..  2020.  A Social Network Analysis and Comparison of Six Dark Web Forums. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :484—493.

With increasing monitoring and regulation by platforms, communities with criminal interests are moving to the dark web, which hosts content ranging from whistle-blowing and privacy, to drugs, terrorism, and hacking. Using post discussion data from six dark web forums we construct six interaction graphs and use social network analysis tools to study these underground communities. We observe the structure of each network to highlight structural patterns and identify nodes of importance through network centrality analysis. Our findings suggest that in the majority of the forums some members are highly connected and form hubs, while most members have a lower number of connections. When examining the posting activities of central nodes we found that most of the central nodes post in sub-forums with broader topics, such as general discussions and tutorials. These members play different roles in the different forums, and within each forum we identified diverse user profiles.

2020-11-04
Howard, J. J., Blanchard, A. J., Sirotin, Y. B., Hasselgren, J. A., Vemury, A. R..  2018.  An Investigation of High-Throughput Biometric Systems: Results of the 2018 Department of Homeland Security Biometric Technology Rally. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS). :1—7.

The 2018 Biometric Technology Rally was an evaluation, sponsored by the U.S. Department of Homeland Security, Science and Technology Directorate (DHS S&T), that challenged industry to provide face or face/iris systems capable of unmanned, traveler identification in a high-throughput security environment. Selected systems were installed at the Maryland Test Facility (MdTF), a DHS S&T affiliated bio-metrics testing laboratory, and evaluated using a population of 363 naive human subjects recruited from the general public. The performance of each system was examined based on measured throughput, capture capability, matching capability, and user satisfaction metrics. This research documents the performance of unmanned face and face/iris systems required to maintain an average total subject interaction time of less than 10 seconds. The results highlight discrepancies between the performance of biometric systems as anticipated by the system designers and the measured performance, indicating an incomplete understanding of the main determinants of system performance. Our research shows that failure-to-acquire errors, unpredicted by system designers, were the main driver of non-identification rates instead of failure-to-match errors, which were better predicted. This outcome indicates the need for a renewed focus on reducing the failure-to-acquire rate in high-throughput, unmanned biometric systems.

2020-07-10
Godawatte, Kithmini, Raza, Mansoor, Murtaza, Mohsin, Saeed, Ather.  2019.  Dark Web Along With The Dark Web Marketing And Surveillance. 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). :483—485.

Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.

2020-04-13
Nalamati, Mrunalini, Kapoor, Ankit, Saqib, Muhammed, Sharma, Nabin, Blumenstein, Michael.  2019.  Drone Detection in Long-Range Surveillance Videos. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.

The usage of small drones/UAVs has significantly increased recently. Consequently, there is a rising potential of small drones being misused for illegal activities such as terrorism, smuggling of drugs, etc. posing high-security risks. Hence, tracking and surveillance of drones are essential to prevent security breaches. The similarity in the appearance of small drone and birds in complex background makes it challenging to detect drones in surveillance videos. This paper addresses the challenge of detecting small drones in surveillance videos using popular and advanced deep learning-based object detection methods. Different CNN-based architectures such as ResNet-101 and Inception with Faster-RCNN, as well as Single Shot Detector (SSD) model was used for experiments. Due to sparse data available for experiments, pre-trained models were used while training the CNNs using transfer learning. Best results were obtained from experiments using Faster-RCNN with the base architecture of ResNet-101. Experimental analysis on different CNN architectures is presented in the paper, along with the visual analysis of the test dataset.

2019-12-18
Dogrul, Murat, Aslan, Adil, Celik, Eyyup.  2011.  Developing an international cooperation on cyber defense and deterrence against Cyber terrorism. 2011 3rd International Conference on Cyber Conflict. :1–15.
Information Technology (IT) security is a growing concern for governments around the world. Cyber terrorism poses a direct threat to the security of the nations' critical infrastructures and ITs as a low-cost asymmetric warfare element. Most of these nations are aware of the vulnerability of the information technologies and the significance of protecting critical infrastructures. To counteract the threat of potentially disastrous cyber attacks, nations' policy makers are increasingly pondering on the use of deterrence strategies to supplement cyber defense. Nations create their own national policies and strategies which cover cyber security countermeasures including cyber defense and deterrence against cyber threats. But it is rather hard to cope with the threat by means of merely `national' cyber defense policies and strategies, since the cyberspace spans worldwide and attack's origin can even be overseas. The term “cyber terrorism” is another source of controversy. An agreement on a common definition of cyber terrorism among the nations is needed. However, the international community has not been able to succeed in developing a commonly accepted comprehensive definition of “terrorism” itself. This paper evaluates the importance of building international cooperation on cyber defense and deterrence against cyber terrorism. It aims to improve and further existing contents and definitions of cyber terrorism; discusses the attractiveness of cyber attacks for terrorists and past experiences on cyber terrorism. It emphasizes establishing international legal measures and cooperation between nations against cyber terrorism in order to maintain the international stability and prosperity. In accordance with NATO's new strategic concept, it focuses on developing the member nations' ability to prevent, detect, defend against and recover from cyber attacks to enhance and coordinate national cyber defense capabilities. It provides necessary steps that have to be taken globally in order to counter cyber terrorism.
Kessel, Ronald.  2010.  The positive force of deterrence: Estimating the quantitative effects of target shifting. 2010 International WaterSide Security Conference. :1–5.
The installation of a protection system can provide protection by either deterring or stopping an attacker. Both modes of effectiveness-deterring and stopping-are uncertain. Some have guessed that deterrence plays a much bigger role than stopping force. The force of deterrence should therefore be of considerable interest, especially if its effect could be estimated and incorporated into a larger risk analysis and business case for developing and buying new systems, but nowhere has it been estimated quantitatively. The effect of one type of deterrence, namely, influencing an attacker's choice of targets-or target shifting, biasing an attacker away from some targets toward others-is assessed quantitatively here using a game-theoretic approach. It is shown that its positive effects are significant. It features as a force multiplier on the order of magnitude or more, even for low-performance security countermeasures whose effectiveness may be compromised somewhat, of necessity, in order to keep the number of false alarms serviceably low. The analysis furthermore implies that there are certain minimum levels of stopping performance that a protection should provide in order to avoid attracting the choice of attackers (under deterrence). Nothing in the analysis argues for complacency in security. Developers must still design the best affordable systems. The analysis enters into the middle ground of security, between no protection and impossibly perfect protection. It counters the criticisms that some raise about lower-level, affordable, sustainable measures that security providers naturally gravitate toward. Although these measures might in some places be defeated in ways that a non-expert can imagine, the measures are not for that reason irresponsible or to be dismissed. Their effectiveness can be much greater than they first appear.
2019-07-01
Kumar, S., Gaur, N., Kumar, A..  2018.  Developing a Secure Cyber Ecosystem for SCADA Architecture. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :559–562.

Advent of Cyber has converted the entire World into a Global village. But, due to vurneabilites in SCADA architecture [1] national assests are more prone to cyber attacks.. Cyber invasions have a catastrophic effect in the minds of the civilian population, in terms of states security system. A robust cyber security is need of the hour to protect the critical information infastructrue & critical infrastructure of a country. Here, in this paper we scrutinize cyber terrorism, vurneabilites in SCADA network systems [1], [2] and concept of cyber resilience to combat cyber attacks.

2019-04-01
Xu, L., Chen, L., Gao, Z., Chang, Y., Iakovou, E., Shi, W..  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.

2018-04-02
Ranakoti, P., Yadav, S., Apurva, A., Tomer, S., Roy, N. R..  2017.  Deep Web Online Anonymity. 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN). :215–219.

Deep web, a hidden and encrypted network that crawls beneath the surface web today has become a social hub for various criminals who carry out their crime through the cyber space and all the crime is being conducted and hosted on the Deep Web. This research paper is an effort to bring forth various techniques and ways in which an internet user can be safe online and protect his privacy through anonymity. Understanding how user's data and private information is phished and what are the risks of sharing personal information on social media.

2018-01-16
Guri, M., Mirsky, Y., Elovici, Y..  2017.  9-1-1 DDoS: Attacks, Analysis and Mitigation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :218–232.

The 911 emergency service belongs to one of the 16 critical infrastructure sectors in the United States. Distributed denial of service (DDoS) attacks launched from a mobile phone botnet pose a significant threat to the availability of this vital service. In this paper we show how attackers can exploit the cellular network protocols in order to launch an anonymized DDoS attack on 911. The current FCC regulations require that all emergency calls be immediately routed regardless of the caller's identifiers (e.g., IMSI and IMEI). A rootkit placed within the baseband firmware of a mobile phone can mask and randomize all cellular identifiers, causing the device to have no genuine identification within the cellular network. Such anonymized phones can issue repeated emergency calls that cannot be blocked by the network or the emergency call centers, technically or legally. We explore the 911 infrastructure and discuss why it is susceptible to this kind of attack. We then implement different forms of the attack and test our implementation on a small cellular network. Finally, we simulate and analyze anonymous attacks on a model of current 911 infrastructure in order to measure the severity of their impact. We found that with less than 6K bots (or \$100K hardware), attackers can block emergency services in an entire state (e.g., North Carolina) for days. We believe that this paper will assist the respective organizations, lawmakers, and security professionals in understanding the scope of this issue in order to prevent possible 911-DDoS attacks in the future.

2018-01-10
Devyatkin, D., Smirnov, I., Ananyeva, M., Kobozeva, M., Chepovskiy, A., Solovyev, F..  2017.  Exploring linguistic features for extremist texts detection (on the material of Russian-speaking illegal texts). 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :188–190.

In this paper we present results of a research on automatic extremist text detection. For this purpose an experimental dataset in the Russian language was created. According to the Russian legislation we cannot make it publicly available. We compared various classification methods (multinomial naive Bayes, logistic regression, linear SVM, random forest, and gradient boosting) and evaluated the contribution of differentiating features (lexical, semantic and psycholinguistic) to classification quality. The results of experiments show that psycholinguistic and semantic features are promising for extremist text detection.

2017-12-12
Almehmadi, A., El-khatib, K..  2017.  On the Possibility of Insider Threat Prevention Using Intent-Based Access Control (IBAC). IEEE Systems Journal. 11:373–384.

Existing access control mechanisms are based on the concept of identity enrolment and recognition and assume that recognized identity is a synonym to ethical actions, yet statistics over the years show that the most severe security breaches are the results of trusted, identified, and legitimate users who turned into malicious insiders. Insider threat damages vary from intellectual property loss and fraud to information technology sabotage. As insider threat incidents evolve, there exist demands for a nonidentity-based authentication measure that rejects access to authorized individuals who have mal-intents of access. In this paper, we study the possibility of using the user's intention as an access control measure using the involuntary electroencephalogram reactions toward visual stimuli. We propose intent-based access control (IBAC) that detects the intentions of access based on the existence of knowledge about an intention. IBAC takes advantage of the robustness of the concealed information test to assess access risk. We use the intent and intent motivation level to compute the access risk. Based on the calculated risk and risk accepted threshold, the system makes the decision whether to grant or deny access requests. We assessed the model using experiments on 30 participants that proved the robustness of the proposed solution.

2017-11-03
Zulkarnine, A. T., Frank, R., Monk, B., Mitchell, J., Davies, G..  2016.  Surfacing collaborated networks in dark web to find illicit and criminal content. 2016 IEEE Conference on Intelligence and Security Informatics (ISI). :109–114.
The Tor Network, a hidden part of the Internet, is becoming an ideal hosting ground for illegal activities and services, including large drug markets, financial frauds, espionage, child sexual abuse. Researchers and law enforcement rely on manual investigations, which are both time-consuming and ultimately inefficient. The first part of this paper explores illicit and criminal content identified by prominent researchers in the dark web. We previously developed a web crawler that automatically searched websites on the internet based on pre-defined keywords and followed the hyperlinks in order to create a map of the network. This crawler has demonstrated previous success in locating and extracting data on child exploitation images, videos, keywords and linkages on the public internet. However, as Tor functions differently at the TCP level, and uses socket connections, further technical challenges are faced when crawling Tor. Some of the other inherent challenges for advanced Tor crawling include scalability, content selection tradeoffs, and social obligation. We discuss these challenges and the measures taken to meet them. Our modified web crawler for Tor, termed the “Dark Crawler” has been able to access Tor while simultaneously accessing the public internet. We present initial findings regarding what extremist and terrorist contents are present in Tor and how this content is connected to each other in a mapped network that facilitates dark web crimes. Our results so far indicate the most popular websites in the dark web are acting as catalysts for dark web expansion by providing necessary knowledgebase, support and services to build Tor hidden services and onion websites.
Park, A. J., Beck, B., Fletche, D., Lam, P., Tsang, H. H..  2016.  Temporal analysis of radical dark web forum users. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :880–883.
Extremist groups have turned to the Internet and social media sites as a means of sharing information amongst one another. This research study analyzes forum posts and finds people who show radical tendencies through the use of natural language processing and sentiment analysis. The forum data being used are from six Islamic forums on the Dark Web which are made available for security research. This research project uses a POS tagger to isolate keywords and nouns that can be utilized with the sentiment analysis program. Then the sentiment analysis program determines the polarity of the post. The post is scored as either positive or negative. These scores are then divided into monthly radical scores for each user. Once these time clusters are mapped, the change in opinions of the users over time may be interpreted as rising or falling levels of radicalism. Each user is then compared on a timeline to other radical users and events to determine possible connections or relationships. The ability to analyze a forum for an overall change in attitude can be an indicator of unrest and possible radical actions or terrorism.
Iliou, C., Kalpakis, G., Tsikrika, T., Vrochidis, S., Kompatsiaris, I..  2016.  Hybrid Focused Crawling for Homemade Explosives Discovery on Surface and Dark Web. 2016 11th International Conference on Availability, Reliability and Security (ARES). :229–234.
This work proposes a generic focused crawling framework for discovering resources on any given topic that reside on the Surface or the Dark Web. The proposed crawler is able to seamlessly traverse the Surface Web and several darknets present in the Dark Web (i.e. Tor, I2P and Freenet) during a single crawl by automatically adapting its crawling behavior and its classifier-guided hyperlink selection strategy based on the network type. This hybrid focused crawler is demonstrated for the discovery of Web resources containing recipes for producing homemade explosives. The evaluation experiments indicate the effectiveness of the proposed ap-proach both for the Surface and the Dark Web.
2017-03-07
Kilger, M..  2015.  Integrating Human Behavior Into the Development of Future Cyberterrorism Scenarios. 2015 10th International Conference on Availability, Reliability and Security. :693–700.

The development of future cyber terrorism scenarios is a key component in building a more comprehensive understanding of cyber threats that are likely to emerge in the near-to mid-term future. While developing concepts of likely new, emerging digital technologies is an important part of this process, this article suggests that understanding the psychological and social forces involved in cyber terrorism is also a key component in the analysis and that the synergy of these two dimensions may produce more accurate and detailed future cyber threat scenarios than either analytical element alone.