Biblio
5G mobile networks promise universal communication environment and aims at providing higher bandwidth, increased communication and networking capabilities, and extensive signal coverage by using multiple communication technologies including Device-to-Device (D-to-D). This paradigm, will allow scalable and ubiquitous connectivity for large-scale mobile networks where a huge number of heterogeneous devices with limited resources will cooperate to enhance communication efficiency in terms of link reliability, spectral efficiency, system capacity, and transmission range. However, owing to its decentralized nature, cooperative D-to-D communication could be vulnerable to attacks initiated on relay nodes. Consequently, a source node has the interest to select the more protected relay to ensure the security of its traffic. Nevertheless, an improvement in the protection level has a counterpart cost that must be sustained by the device. To address this trade-off as well as the interaction between the attacker and the source device, we propose a dynamic game theoretic based approach to model and analyze this problem as a cost model. The utility function of the proposed non-cooperative game is based on the concepts of return on protection and return on attack which illustrate the gain of selecting a relay for transmitting a data packet by a source node and the reward of the attacker to perform an attack to compromise the transmitted data. Moreover, we discuss and analyze Nash equilibrium convergence of this attack-defense model and we propose an heuristic algorithm that can determine the equilibrium state in a limited number of running stages. Finally, we perform simulation work to show the effectiveness of the game model in assessing the behavior of the source node and the attacker and its ability to reach equilibrium within a finite number of steps.
Clustering is one of an eminent mechanism which deals with large number of nodes and effective consumption of energy in wireless sensor networks (WSN). Balanced Load Clustering is used to balance the channel bandwidth by incorporating the concept of HMAC. Presently several research studies works to improve the quality of service and energy efficiency of WSN but the security issues are not taken care of. Relay based multipath trust is one of the methods to secure the network. To this end, a novel approach called Balanced Load Clustering with Trusted Multipath Relay Routing Protocol (BLC-TMR2) to improve the performance of the network. The proposed protocol consists of two algorithms. Initially in order to reduce the energy consumption of the network, balanced load clustering (BLC) concepts is introduced. Secondly to secure the network from the malicious activity trusted multipath relay routing protocol (TMR2) is used. Multipath routing is monitored by the relay node and it computed the trust values. Network simulation (NS2) software is used to obtain the results and the results prove that the proposed system performs better the earlier methods the in terms of efficiency, consumption, QoS and throughput.
This paper investigates the secrecy performance of full-duplex relay mode in underlay cognitive radio networks using decode-and-forward relay selection. The analytical results prove that full-duplex mode can guarantee security under critical conditions such as the bad residual self-interference and the presence of hi-tech eavesdropper. The secrecy outage probability is derived based on the statistical characteristics of channels in this considered system. The system is examined under five circumferences: 1) Different values of primary network's desired outage probability; 2) Different values of primary transmitter's transmit power; 3) Applying of multiple relays selection; 4) Systems undergo path-loss during the transmission process; 5) Systems undergo self-interference in relays. Simulation results are presented to verify the analysis.
This paper considers the two-user interference relay channel where each source wishes to communicate to its destination a message that is confidential from the other destination. Furthermore, the relay, that is the enabler of communication, due to the absence of direct links, is untrusted. Thus, the messages from both sources need to be kept secret from the relay as well. We provide an achievable secure rate region for this network. The achievability scheme utilizes structured codes for message transmission, cooperative jamming and scaled compute-and-forward. In particular, the sources use nested lattice codes and stochastic encoding, while the destinations jam using lattice points. The relay decodes two integer combinations of the received lattice points and forwards, using Gaussian codewords, to both destinations. The achievability technique provides the insight that we can utilize the untrusted relay node as an encryption block in a two-hop interference relay channel with confidential messages.
We investigate large wireless networks subject to security constraints. In contrast to point-to-point, interference-limited communications considered in prior works, we propose active cooperative relaying based schemes. We consider a network with nl legitimate nodes and ne eavesdroppers, and path loss exponent α ≥ 2. As long as ne2(log(ne))γ = o(nl) holds for some positive γ, we show one can obtain unbounded secure aggregate rate. This means zero-cost secure communication, given a fixed total power constraint for the entire network. We achieve this result with (i) the source using Wyner randomized encoder and a serial (multi-stage) block Markov scheme, to cooperate with the relays, and (ii) the relays acting as a virtual multi-antenna to apply beamforming against the eavesdroppers. Our simpler parallel (two-stage) relaying scheme can achieve the same unbounded secure aggregate rate when neα/2 + 1 (log(ne))γ+δ(α/2+1) = o(nl) holds, for some positive γ, δ.