Visible to the public Biblio

Filters: Keyword is secrecy capacity  [Clear All Filters]
2023-04-14
Yang, Dongli, Huang, Jingxuan, Liu, Xiaodong, Sun, Ce, Fei, Zesong.  2022.  A Polar Coding Scheme for Achieving Secrecy of Fading Wiretap Channels in UAV Communications. 2022 IEEE/CIC International Conference on Communications in China (ICCC). :468–473.
The high maneuverability of the unmanned aerial vehicle (UAV), facilitating fast and flexible deployment of communication infrastructures, brings potentially valuable opportunities to the future wireless communication industry. Nevertheless, UAV communication networks are faced with severe security challenges since air to ground (A2G) communications are more vulnerable to eavesdropping attacks than terrestrial communications. To solve the problem, we propose a coding scheme that hierarchically utilizes polar codes in order to address channel multi-state variation for UAV wiretap channels, without the instantaneous channel state information (CSI) known at the transmitter. The theoretical analysis and simulation results show that the scheme achieves the security capacity of the channel and meets the conditions of reliability and security.
ISSN: 2377-8644
2022-07-01
Chen, Liquan, Guo, Xing, Lu, Tianyu, Gao, Yuan.  2021.  Formalization of the Secrecy Capacity in Non-degraded Wiretap Channel. 2021 7th International Conference on Computer and Communications (ICCC). :535–538.
Unlike the traditional key-exchange based cryptography, physical layer security is built on information theory and aims to achieve unconditional security by exploiting the physical characteristics of wireless channels. With the growth of the number of wireless devices, physical layer security has been gradually emphasized by researchers. Various physical layer security protocols have been proposed for different communication scenarios. Since these protocols are based on information-theoretic security and the formalization work for information theory were not complete when these protocols were proposed, the security of these protocols lacked formal proofs. In this paper, we propose a formal definition for the secrecy capacity in non-degraded wiretap channel model and a formal proof for the secrecy capacity in binary symmetric channel with the help of SSReflect/Coq theorem prover.
2022-05-06
Liu, Yao, Li, Luyu, Fan, Rong, Ma, Suya, Liu, Xuan, Su, Yishan.  2021.  A Physical Layer Security Mechanism based on Cooperative Jamming in Underwater Acoustic Sensor Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :239—243.
Due to broadcast nature of acoustic signal, underwater acoustic sensor networks face security challenge. In the paper, we propose a physical layer security transmission scheme with cooperative jamming. The proposed scheme takes advantage of the long propagation delay of the underwater acoustic channel to interfere with eavesdropper without affecting the reception of intended users. The results of both simulation and field experiment show that the proposed mechanism can improve the secrecy capacity of the network and effectively jam eavesdropper.
2021-04-08
Bloch, M., Laneman, J. N..  2009.  Information-spectrum methods for information-theoretic security. 2009 Information Theory and Applications Workshop. :23–28.
We investigate the potential of an information-spectrum approach to information-theoretic security. We show how this approach provides conceptually simple yet powerful results that can be used to investigate complex communication scenarios. In particular, we illustrate the usefulness of information-spectrum methods by analyzing the effect of channel state information (CSI) on the secure rates achievable over wiretap channels. We establish a formula for secrecy capacity, which we then specialize to compute achievable rates for ergodic fading channels in the presence of imperfect CSI. Our results confirm the importance of having some knowledge about the eavesdropper's channel, but also show that imperfect CSI does not necessarily preclude security.
Bloch, M., Barros, J., Rodrigues, M. R. D., McLaughlin, S. W..  2008.  Wireless Information-Theoretic Security. IEEE Transactions on Information Theory. 54:2515–2534.
This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
Chrysikos, T., Dagiuklas, T., Kotsopoulos, S..  2010.  Wireless Information-Theoretic Security for moving users in autonomic networks. 2010 IFIP Wireless Days. :1–5.
This paper studies Wireless Information-Theoretic Security for low-speed mobility in autonomic networks. More specifically, the impact of user movement on the Probability of Non-Zero Secrecy Capacity and Outage Secrecy Capacity for different channel conditions has been investigated. This is accomplished by establishing a link between different user locations and the boundaries of information-theoretic secure communication. Human mobility scenarios are considered, and its impact on physical layer security is examined, considering quasi-static Rayleigh channels for the fading phenomena. Simulation results have shown that the Secrecy Capacity depends on the relative distance of legitimate and illegitimate (eavesdropper) users in reference to the given transmitter.
2021-02-10
Bendary, A., Koksal, C. E..  2020.  Order-Optimal Scaling of Covert Communication over MIMO AWGN Channels. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.
Covert communication, i.e., communication with a low probability of detection (LPD), has attracted a huge body of work. Recent studies have concluded that the maximal covert coding rate of the discrete memoryless channels and the additive white Gaussian noise (AWGN) channels is diminishing with the blocklength: the maximum information nats that can be transmitted covertly and reliably over such channels is only on the order of the square root of the blocklength. In this paper, we study covert communication over multiple-input multiple-output (MIMO) AWGN channels. We derive the order-optimal scaling law of the number of covert nats when the maximal covert coding rate of MIMO AWGN channels is diminishing with the blocklength. Furthermore, we provide a comparative discussion for the case in which secrecy and energy undetectability constraints are combined.
2020-12-28
Makarfi, A. U., Rabie, K. M., Kaiwartya, O., Li, X., Kharel, R..  2020.  Physical Layer Security in Vehicular Networks with Reconfigurable Intelligent Surfaces. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1—6.

This paper studies the physical layer security (PLS) of a vehicular network employing a reconfigurable intelligent surface (RIS). RIS technologies are emerging as an important paradigm for the realisation of smart radio environments, where large numbers of small, low-cost and passive elements, reflect the incident signal with an adjustable phase shift without requiring a dedicated energy source. Inspired by the promising potential of RIS-based transmission, we investigate two vehicular network system models: One with vehicle-to-vehicle communication with the source employing a RIS-based access point, and the other model in the form of a vehicular adhoc network (VANET), with a RIS-based relay deployed on a building. Both models assume the presence of an eavesdropper to investigate the average secrecy capacity of the considered systems. Monte-Carlo simulations are provided throughout to validate the results. The results show that performance of the system in terms of the secrecy capacity is affected by the location of the RIS-relay and the number of RIS cells. The effect of other system parameters such as source power and eavesdropper distances are also studied.

2020-04-10
Tan, Yeteng, Pu, Tao, Zheng, Jilin, Zhou, Hua, Su, Guorui, Shi, Haiqin.  2019.  Study on the Effect of System Parameters on Physical-Layer Security of Optical CDMA Systems. 2019 18th International Conference on Optical Communications and Networks (ICOCN). :1—3.
Optical CDMA (OCMDA) technology directly encrypts optical transmission links at the physical layer, which can improve the security of communication system against fibre-optic eavesdropping attacks. System parameters will affect the performances of OCDMA systems, based on the wiretap channel model of OCDMA systems, "secrecy capacity" is employed as an indicator to estimate the effects of system parameters (the type of code words, the length of code words) on the security of the systems. Simulation results demonstrate that system parameters play an important role and choosing the code words with better cross-correlation characteristics can improve the security of OCDMA systems.
2019-01-21
Wang, J., Lin, S., Liu, C., Wang, J., Zhu, B., Jiang, Y..  2018.  Secrecy Capacity of Indoor Visible Light Communication Channels. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In the indoor scenario, visible light communications (VLC) is regarded as one of the most promising candidates for future wireless communications. Recently, the physical layer security for indoor VLC has drawn considerable attention. In this paper, the secrecy capacity of indoor VLC is analyzed. Initially, an VLC system with a transmitter, a legitimate receiver, and an eavesdropper is established. In the system, the nonnegativity, the peak optical intensity constraint and the dimmable average optical intensity constraint are considered. Based on the principle of information theory, the closed-form expressions of the upper and the lower bounds on the secrecy capacity are derived, respectively. Numerical results show that the upper and the lower bounds on secrecy capacity are very tight, which verify the accuracy of the derived closed-form expressions.
Chen, Z., Wang, X..  2018.  A Method for Improving Physical Layer Security in Visible Light Communication Networks. 2018 IEEE Conference on Standards for Communications and Networking (CSCN). :1–5.
In this paper, a method is proposed for improving the physical layer security for indoor visible light communication (VLC) networks with angle diversity transmitters. An angle diversity transmitter usually consists of multiple narrow-beam light-emitting diode (LED) elements with different orientations. Angle diversity transmitters are suitable for confidential data transmission, since data transmission via narrow light beams can effectively avoid the leakage of messages. In order to improve security performance, protection zones are introduced to the systems with angle diversity transmitters. Simulation results show that over 50% performance improvement can be obtained by adding protection zones.
2018-11-19
Wang, Y., Zhang, L..  2017.  High Security Orthogonal Factorized Channel Scrambling Scheme with Location Information Embedded for MIMO-Based VLC System. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.
The broadcast nature of visible light beam has aroused great concerns about the privacy and confidentiality of visible light communication (VLC) systems.In this paper, in order to enhance the physical layer security, we propose a channel scrambling scheme, which realizes orthogonal factorized channel scrambling with location information embedded (OFCS-LIE) for the VLC systems. We firstly embed the location information of the legitimate user, including the transmission angle and the distance, into a location information embedded (LIE) matrix, then the LIE matrix is factorized orthogonally in order that the LIE matrix is approximately uncorrelated to the multiple-input, multiple-output (MIMO) channels by the iterative orthogonal factorization method, where the iteration number is determined based on the orthogonal error. The resultant OFCS-LIE matrix is approximately orthogonal and used to enhance both the reliability and the security of information transmission. Furthermore, we derive the information leakage at the eavesdropper and the secrecy capacity to analyze the system security. Simulations are performed, and the results demonstrate that with the aid of the OFCS-LIE scheme, MIMO-based VLC system has achieved higher security when compared with the counterpart scrambling scheme and the system without scrambling.
2017-12-20
Cao, C., Zhang, H., Lu, T., Gulliver, T. A..  2017.  An improved cooperative jamming strategy for PHY security in a multi-hop communications system. 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). :1–4.
In this paper, an improved cooperative jamming (CJ) strategy is developed for physical layer (PHY) security in a multi-hop wireless communication system which employs beamforming in the last hop. Users are assigned to independent groups based on the merger-and-split rule in a coalition game. The secrecy capacity for a valid coalition is a non-convex optimization problem which cannot easily be solved. Therefore, restrictions are added to transform this into a convex problem, and this is solved to obtain a suboptimal closed-form solution for the secrecy capacity. Simulation results are presented which show that the proposed strategy outperforms other methods such as non-cooperation, relay cooperation, and previous CJ approaches in terms of the secrecy capacity. Further, it is shown that the proposed multi-hop solution is suitable for long distance communication systems.
2015-05-01
Mirmohseni, M., Papadimitratos, P..  2014.  Scaling laws for secrecy capacity in cooperative wireless networks. INFOCOM, 2014 Proceedings IEEE. :1527-1535.

We investigate large wireless networks subject to security constraints. In contrast to point-to-point, interference-limited communications considered in prior works, we propose active cooperative relaying based schemes. We consider a network with nl legitimate nodes and ne eavesdroppers, and path loss exponent α ≥ 2. As long as ne2(log(ne))γ = o(nl) holds for some positive γ, we show one can obtain unbounded secure aggregate rate. This means zero-cost secure communication, given a fixed total power constraint for the entire network. We achieve this result with (i) the source using Wyner randomized encoder and a serial (multi-stage) block Markov scheme, to cooperate with the relays, and (ii) the relays acting as a virtual multi-antenna to apply beamforming against the eavesdroppers. Our simpler parallel (two-stage) relaying scheme can achieve the same unbounded secure aggregate rate when neα/2 + 1 (log(ne))γ+δ(α/2+1) = o(nl) holds, for some positive γ, δ.