Visible to the public Biblio

Filters: Keyword is detection error rate reduction  [Clear All Filters]
2020-11-09
Yang, J., Kang, X., Wong, E. K., Shi, Y..  2018.  Deep Learning with Feature Reuse for JPEG Image Steganalysis. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :533–538.
It is challenging to detect weak hidden information in a JPEG compressed image. In this paper, we propose a 32-layer convolutional neural networks (CNNs) with feature reuse by concatenating all features from previous layers. The proposed method can improve the flow of gradient and information, and the shared features and bottleneck layers in the proposed CNN model further reduce the number of parameters dramatically. The experimental results shown that the proposed method significantly reduce the detection error rate compared with the existing JPEG steganalysis methods, e.g. state-of-the-art XuNet method and the conventional SCA-GFR method. Compared with XuNet method and conventional method SCA-GFR in detecting J-UNIWARD at 0.1 bpnzAC (bit per non-zero AC DCT coefficient), the proposed method can reduce detection error rate by 4.33% and 6.55% respectively.
2019-05-01
Lu, X., Wan, X., Xiao, L., Tang, Y., Zhuang, W..  2018.  Learning-Based Rogue Edge Detection in VANETs with Ambient Radio Signals. 2018 IEEE International Conference on Communications (ICC). :1-6.
Edge computing for mobile devices in vehicular ad hoc networks (VANETs) has to address rogue edge attacks, in which a rogue edge node claims to be the serving edge in the vehicle to steal user secrets and help launch other attacks such as man-in-the-middle attacks. Rogue edge detection in VANETs is more challenging than the spoofing detection in indoor wireless networks due to the high mobility of onboard units (OBUs) and the large-scale network infrastructure with roadside units (RSUs). In this paper, we propose a physical (PHY)- layer rogue edge detection scheme for VANETs according to the shared ambient radio signals observed during the same moving trace of the mobile device and the serving edge in the same vehicle. In this scheme, the edge node under test has to send the physical properties of the ambient radio signals, including the received signal strength indicator (RSSI) of the ambient signals with the corresponding source media access control (MAC) address during a given time slot. The mobile device can choose to compare the received ambient signal properties and its own record or apply the RSSI of the received signals to detect rogue edge attacks, and determines test threshold in the detection. We adopt a reinforcement learning technique to enable the mobile device to achieve the optimal detection policy in the dynamic VANET without being aware of the VANET model and the attack model. Simulation results show that the Q-learning based detection scheme can significantly reduce the detection error rate and increase the utility compared with existing schemes.