Biblio
This paper proposes a generic SATCOM control loop in a generic multivector structure to facilitate predictive analysis for achieving resiliency under time varying circumstances. The control loop provides strategies and actions in the context of game theory to optimize the resources for SATCOM networks. Details of the theoretic game and resources optimization approaches are discussed in the paper.
Virtual platforms provide a full hardware/software platform to study device limitations in an early stages of the design flow and to develop software without requiring a physical implementation. This paper describes the development process of a virtual platform for Deep Packet Inspection (DPI) hardware accelerators by using Transaction Level Modeling (TLM). We propose two DPI architectures oriented to System-on-Chip FPGA. The first architecture, CPU-DMA based architecture, is a hybrid CPU/FPGA where the packets are filtered in the software domain. The second architecture, Hardware-IP based architecture, is mainly implemented in the hardware domain. We have created two virtual platforms and performed the simulation, the debugging and the analysis of the hardware/software features, in order to compare results for both architectures.
Quasi-steady-state (QSS) large-signal models are often taken for granted in the analysis and design of DC-DC switching converters, particularly for varying operating conditions. In this study, the premise for the QSS is justified quantitatively for the first time. Based on the QSS, the DC-DC switching converter under varying operating conditions is reduced to the linear time varying systems model. Thereafter, the QSS concept is applied to analysis of frequency-domain properties of the DC-DC switching converters by using three-dimensional Bode plots, which is then utilised to the optimisation of the controller parameters for wide variations of input voltage and load resistance. An experimental prototype of an average-current-mode-controlled boost DC-DC converter is built to verify the analysis and design by both frequency-domain and time-domain measurements.