Visible to the public Biblio

Filters: Keyword is Through-silicon vias  [Clear All Filters]
2022-04-20
Venkataramanan, Venkatesh, Srivastava, Anurag K., Hahn, Adam, Zonouz, Saman.  2019.  Measuring and Enhancing Microgrid Resiliency Against Cyber Threats. IEEE Transactions on Industry Applications. 55:6303—6312.
Recent cyber attacks on the power grid have been of increasing complexity and sophistication. In order to understand the impact of cyber-attacks on the power system resiliency, it is important to consider an holistic cyber-physical system specially with increasing industrial automation. In this study, device-level resilience properties of the various controllers and their impact on the microgrid resiliency is studied. In addition, a cyber-physical resiliency metric considering vulnerabilities, system model, and device-level properties is proposed. Resiliency is defined as the system ability to provide energy to critical loads even in extreme contingencies and depends on system ability to withstand, predict, and recover. A use case is presented inspired by the recent Ukraine cyber-attack. A use case has been presented to demonstrate application of the developed cyber-physical resiliency metric to enhance situational awareness of the operator, and enable better proactive or remedial control actions to improve resiliency.
Venkataramanan, V., Srivastava, A., Hahn, A., Zonouz, S..  2018.  Enhancing Microgrid Resiliency Against Cyber Vulnerabilities. 2018 IEEE Industry Applications Society Annual Meeting (IAS). :1—8.
Recent cyber attacks on the power grid have been of increasing complexity and sophistication. In order to understand the impact of cyber-attacks on the power system resiliency, it is important to consider an holistic cyber-physical system specially with increasing industrial automation. In this work, device level resilience properties of the various controllers and their impact on the microgrid resiliency is studied. In addition, a cyber-physical resiliency metric considering vulnerabilities, system model, and device level properties is proposed. A use case is presented inspired by the recent Ukraine cyber-attack. A use case has been presented to demonstrate application of the developed cyber-physical resiliency metric to enhance situational awareness of the operator, and enable better control actions to improve resiliency.
2021-09-30
Zhang, Zhiming, Yu, Qiaoyan.  2020.  Invariance Checking Based Trojan Detection Method for Three-Dimensional Integrated Circuits. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Recently literature indicates that stack based three-dimensional (3D) integration techniques may bring in new security vulnerabilities, such as new attack surfaces for hardware Trojan (HT) insertion. Compared to its two-dimensional counterpart (2DHTs), a 3D hardware Trojan (3DHT) could be stealthily distributed in multiple tiers in a single 3D chip. Although the comprehensive models for 3DHTs are available in recent work, there still lacks 3DHT detection and mitigation methods, especially run-time countermeasures against 3DHTs. This work proposes to leverage the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier hardware Trojans in stacked multi-tier chips. An invariance checking method is further proposed to detect the Trojans that induce malicious NoC packets or facilitate information leak. The proposed method is successfully deployed in NoC routers and achieves a Trojan detection rate of over 94%. The synthesis result of a hardened router at a 45nm technology node shows that the proposed invariance checking only increases the area by 6.49% and consumes 3.76% more dynamic power than an existing 3D router. The NoC protected with the proposed method is applied to the image authentication in a 3D system. The case study indicates that the proposed security measure reduces the correlation coefficient by up to 31% over the baseline.
2019-06-28
Chen, G., Wang, D., Li, T., Zhang, C., Gu, M., Sun, J..  2018.  Scalable Verification Framework for C Program. 2018 25th Asia-Pacific Software Engineering Conference (APSEC). :129-138.

Software verification has been well applied in safety critical areas and has shown the ability to provide better quality assurance for modern software. However, as lines of code and complexity of software systems increase, the scalability of verification becomes a challenge. In this paper, we present an automatic software verification framework TSV to address the scalability issues: (i) the extended structural abstraction and property-guided program slicing to solve large-scale program verification problem, saving time and memory without losing accuracy; (ii) automatically select different verification methods according to the program and property context to improve the verification efficiency. For evaluation, we compare TSV's different configurations with existing C program verifiers based on open benchmarks. We found that TSV with auto-selection performs better than with bounded model checking only or with extended structural abstraction only. Compared to existing tools such as CMBC and CPAChecker, it acquires 10%-20% improvement of accuracy and 50%-90% improvement of memory consumption.