Visible to the public Biblio

Filters: Keyword is reputation  [Clear All Filters]
2022-02-22
Sen, Adnan Ahmed Abi, Nazar, Shamim Kamal Abdul, Osman, Nazik Ahmed, Bahbouh, Nour Mahmoud, Aloufi, Hazim Faisal, Alawfi, Ibrahim Moeed M..  2021.  A New Technique for Managing Reputation of Peers in the Cooperation Approach for Privacy Protection. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :409—412.
Protecting privacy of the user location in Internet of Things (IoT) applications is a complex problem. Peer-to-peer (P2P) approach is one of the most popular techniques used to protect privacy in IoT applications, especially that use the location service. The P2P approach requires trust among peers in addition to serious cooperation. These requirements are still an open problem for this approach and its methods. In this paper, we propose an effective solution to this issue by creating a manager for the peers' reputation called R-TTP. Each peer has a new query. He has to evaluate the cooperated peer. Depending on the received result of that evaluation, the main peer will send multiple copies of the same query to multiple peers and then compare results. Moreover, we proposed another scenario to the manager of reputation by depending on Fog computing to enhance both performance and privacy. Relying on this work, a user can determine the most suitable of many available cooperating peers, while avoiding the problems of putting up with an inappropriate cooperating or uncommitted peer. The proposed method would significantly contribute to developing most of the privacy techniques in the location-based services. We implemented the main functions of the proposed method to confirm its effectiveness, applicability, and ease of application.
2021-04-09
Bhattacharya, M. P., Zavarsky, P., Butakov, S..  2020.  Enhancing the Security and Privacy of Self-Sovereign Identities on Hyperledger Indy Blockchain. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—7.
Self-sovereign identities provide user autonomy and immutability to individual identities and full control to their identity owners. The immutability and control are possible by implementing identities in a decentralized manner on blockchains that are specially designed for identity operations such as Hyperledger Indy. As with any type of identity, self-sovereign identities too deal with Personally Identifiable Information (PII) of the identity holders and comes with the usual risks of privacy and security. This study examined certain scenarios of personal data disclosure via credential exchanges between such identities and risks of man-in-the-middle attacks in the blockchain based identity system Hyperledger Indy. On the basis of the findings, the paper proposes the following enhancements: 1) A novel attribute sensitivity score model for self-sovereign identity agents to ascertain the sensitivity of attributes shared in credential exchanges 2) A method of mitigating man-in-the-middle attacks between peer self-sovereign identities and 3) A novel quantitative model for determining a credential issuer's reputation based on the number of issued credentials in a window period, which is then utilized to calculate an overall confidence level score for the issuer.
2021-03-09
Le, T. V., Huan, T. T..  2020.  Computational Intelligence Towards Trusted Cloudlet Based Fog Computing. 2020 5th International Conference on Green Technology and Sustainable Development (GTSD). :141—147.

The current trend of IoT user is toward the use of services and data externally due to voluminous processing, which demands resourceful machines. Instead of relying on the cloud of poor connectivity or a limited bandwidth, the IoT user prefers to use a cloudlet-based fog computing. However, the choice of cloudlet is solely dependent on its trust and reliability. In practice, even though a cloudlet possesses a required trusted platform module (TPM), we argue that the presence of a TPM is not enough to make the cloudlet trustworthy as the TPM supports only the primitive security of the bootstrap. Besides uncertainty in security, other uncertain conditions of the network (e.g. network bandwidth, latency and expectation time to complete a service request for cloud-based services) may also prevail for the cloudlets. Therefore, in order to evaluate the trust value of multiple cloudlets under uncertainty, this paper broadly proposes the empirical process for evaluation of trust. This will be followed by a measure of trust-based reputation of cloudlets through computational intelligence such as fuzzy logic and ant colony optimization (ACO). In the process, fuzzy logic-based inference and membership evaluation of trust are presented. In addition, ACO and its pheromone communication across different colonies are being modeled with multiple cloudlets. Finally, a measure of affinity or popular trust and reputation of the cloudlets is also proposed. Together with the context of application under multiple cloudlets, the computationally intelligent approaches have been investigated in terms of performance. Hence the contribution is subjected towards building a trusted cloudlet-based fog platform.

2020-12-21
Figueiredo, N. M., Rodríguez, M. C..  2020.  Trustworthiness in Sensor Networks A Reputation-Based Method for Weather Stations. 2020 International Conference on Omni-layer Intelligent Systems (COINS). :1–6.
Trustworthiness is a soft-security feature that evaluates the correct behavior of nodes in a network. More specifically, this feature tries to answer the following question: how much should we trust in a certain node? To determine the trustworthiness of a node, our approach focuses on two reputation indicators: the self-data trust, which evaluates the data generated by the node itself taking into account its historical data; and the peer-data trust, which utilizes the nearest nodes' data. In this paper, we show how these two indicators can be calculated using the Gaussian Overlap and Pearson correlation. This paper includes a validation of our trustworthiness approach using real data from unofficial and official weather stations in Portugal. This is a representative scenario of the current situation in many other areas, with different entities providing different kinds of data using autonomous sensors in a continuous way over the networks.
2020-04-06
Wu, Yichang, Qiao, Yuansong, Ye, Yuhang, Lee, Brian.  2019.  Towards Improved Trust in Threat Intelligence Sharing using Blockchain and Trusted Computing. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :474–481.
Threat intelligence sharing is posited as an important aid to help counter cybersecurity attacks and a number of threat intelligence sharing communities exist. There is a general consensus that many challenges remain to be overcome to achieve fully effective sharing, including concerns about privacy, negative publicity, policy/legal issues and expense of sharing, amongst others. One recent trend undertaken to address this is the use of decentralized blockchain based sharing architectures. However while these platforms can help increase sharing effectiveness they do not fully address all of the above challenges. In particular, issues around trust are not satisfactorily solved by current approaches. In this paper, we describe a novel trust enhancement framework -TITAN- for decentralized sharing based on the use of P2P reputation systems to address open trust issues. Our design uses blockchain and Trusted Execution Environment technologies to ensure security, integrity and privacy in the operation of the threat intelligence sharing reputation system.
2020-04-03
Bhamidipati, Venkata Siva Vijayendra, Chan, Michael, Jain, Arpit, Murthy, Ashok Srinivasa, Chamorro, Derek, Muralidhar, Aniruddh Kamalapuram.  2019.  Predictive Proof of Metrics – a New Blockchain Consensus Protocol. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :498—505.
We present a new consensus protocol for Blockchain ecosystems - PPoM - Predictive Proof of Metrics. First, we describe the motivation for PPoM - why we need it. Then, we outline its architecture, components, and operation. As part of this, we detail our reputation and reward based approach to bring about consensus in the Blockchain. We also address security and scalability for a PPoM based Blockchain, and discuss potential improvements for future work. Finally, we present measurements for our short term Provider Prediction engine.
2020-02-24
Malik, Nisha, Nanda, Priyadarsi, He, Xiangjian, Liu, RenPing.  2019.  Trust and Reputation in Vehicular Networks: A Smart Contract-Based Approach. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :34–41.
Appending digital signatures and certificates to messages guarantee data integrity and ensure non-repudiation, but do not identify greedy authenticated nodes. Trust evolves if some reputable and trusted node verifies the node, data and evaluates the trustworthiness of the node using an accurate metric. But, even if the verifying party is a trusted centralized party, there is opacity and obscurity in computed reputation rating. The trusted party maps it with the node's identity, but how is it evaluated and what inputs derive the reputation rating remains hidden, thus concealment of transparency leads to privacy. Besides, the malevolent nodes might collude together for defamatory actions against reliable nodes, and eventually bad mouth these nodes or praise malicious nodes collaboratively. Thus, we cannot always assume the fairness of the nodes as the rating they give to any node might not be a fair one. In this paper, we propose a smart contract-based approach to update and query the reputation of nodes, stored and maintained by IPFS distributed storage. The use case particularly deals with an emergency scenario, dealing against colluding attacks. Our scheme is implemented using MATLAB simulation. The results show how smart contracts are capable of accurately identifying trustworthy nodes and record the reputation of a node transparently and immutably.
2020-02-10
Carneiro, Lucas R., Delgado, Carla A.D.M., da Silva, João C.P..  2019.  Social Analysis of Game Agents: How Trust and Reputation can Improve Player Experience. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). :485–490.
Video games normally use Artificial Intelligence techniques to improve Non-Player Character (NPC) behavior, creating a more realistic experience for their players. However, rational behavior in general does not consider social interactions between player and bots. Because of that, a new framework for NPCs was proposed, which uses a social bias to mix the default strategy of finding the best possible plays to win with a analysis to decide if other players should be categorized as allies or foes. Trust and reputation models were used together to implement this demeanor. In this paper we discuss an implementation of this framework inside the game Settlers of Catan. New NPC agents are created to this implementation. We also analyze the results obtained from simulations among agents and players to conclude how the use of trust and reputation in NPCs can create a better gaming experience.
2019-09-09
Jim, L. E., Gregory, M. A..  2018.  AIS Reputation Mechanism in MANET. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). :1-6.

In Mobile Ad hoc Networks (MANET) the nodes act as a host as well as a router thereby forming a self-organizing network that does not rely upon fixed infrastructure, other than gateways to other networks. MANET provides a quick to deploy flexible networking capability with a dynamic topology due to node mobility. MANET nodes transmit, relay and receive traffic from neighbor nodes as the network topology changes. Security is important for MANET and trust computation is used to improve collaboration between nodes. MANET trust frameworks utilize real-time trust computations to maintain the trust state for nodes in the network. If the trust computation is not resilient against attack, the trust values computed could be unreliable. This paper proposes an Artificial Immune System based approach to compute trust and thereby provide a resilient reputation mechanism.

2019-07-01
Nwebonyi, Francis N., Martins, Rolando, Correia, Manuel E..  2018.  Reputation-Based Security System For Edge Computing. Proceedings of the 13th International Conference on Availability, Reliability and Security. :39:1-39:8.

Given the centralized architecture of cloud computing, there is a genuine concern about its ability to adequately cope with the demands of connecting devices which are sharply increasing in number and capacity. This has led to the emergence of edge computing technologies, including but not limited to mobile edge-clouds. As a branch of Peer-to-Peer (P2P) networks, mobile edge-clouds inherits disturbing security concerns which have not been adequately addressed in previous methods. P2P security systems have featured many trust-based methods owing to their suitability and cost advantage, but these approaches still lack in a number of ways. They mostly focus on protecting client nodes from malicious service providers, but downplay the security of service provider nodes, thereby creating potential loopholes for bandwidth attack. Similarly, trust bootstrapping is often via default scores, or based on heuristics that does not reflect the identity of a newcomer. This work has patched these inherent loopholes and improved fairness among participating peers. The use cases of mobile edge-clouds have been particularly considered and a scalable reputation based security mechanism was derived to suit them. BitTorrent protocol was modified to form a suitable test bed, using Peersim simulator. The proposed method was compared to some related methods in the literature through detailed simulations. Results show that the new method can foster trust and significantly improve network security, in comparison to previous similar systems.

2019-04-05
Konorski, J..  2018.  Double-Blind Reputation vs. Intelligent Fake VIP Attacks in Cloud-Assisted Interactions. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1637-1641.

We consider a generic model of Client-Server interactions in the presence of Sender and Relay, conceptual agents acting on behalf of Client and Server, respectively, and modeling cloud service providers in the envisaged "QoS as a Service paradigm". Client generates objects which Sender tags with demanded QoS level, whereas Relay assigns the QoS level to be provided at Server. To verify an object's right to a QoS level, Relay detects its signature that neither Client nor Sender can modify. Since signature detection is costly, Relay tends to occasionally skip it and trust an object; this prompts Sender to occasionally launch a Fake VIP attack, i.e., demand undue QoS level. In a Stackelberg game setting, Relay employs a trust strategy in the form of a double-blind reputation scheme so as to minimize the signature detection cost and undue QoS provision, anticipating a best-response Fake VIP attack strategy on the part of Sender. We ask whether the double-blind reputation scheme, previously proved resilient to a probabilistic Fake VIP attack strategy, is equally resilient to more intelligent Sender behavior. Two intelligent attack strategies are proposed and analyzed using two-dimensional Markov chains.

2018-02-02
Jayasinghe, U., Otebolaku, A., Um, T. W., Lee, G. M..  2017.  Data centric trust evaluation and prediction framework for IOT. 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K). :1–7.

Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas.

2017-09-19
Sharma, Ankita, Banati, Hema.  2016.  A Framework for Implementing Trust in Cloud Computing. Proceedings of the International Conference on Internet of Things and Cloud Computing. :6:1–6:7.

Cloud has gained a wide acceptance across the globe. Despite wide acceptance and adoption of cloud computing, certain apprehensions and diffidence, related to safety and security of data still exists. The service provider needs to convince and demonstrate to the client, the confidentiality of data on the cloud. This can be broadly translated to issues related to the process of identifying, developing, maintaining and optimizing trust with clients regarding the services provided. Continuous demonstration, maintenance and optimization of trust of the agreed upon services affects the relationship with a client. The paper proposes a framework of integration of trust at the IAAS level in the cloud. It proposes a novel method of generation of trust index factor, considering the performance and the agility of the feedback received using fuzzy logic.

2015-05-05
Sanger, J., Richthammer, C., Hassan, S., Pernul, G..  2014.  Trust and Big Data: A Roadmap for Research. Database and Expert Systems Applications (DEXA), 2014 25th International Workshop on. :278-282.

We are currently living in the age of Big Data coming along with the challenge to grasp the golden opportunities at hand. This mixed blessing also dominates the relation between Big Data and trust. On the one side, large amounts of trust-related data can be utilized to establish innovative data-driven approaches for reputation-based trust management. On the other side, this is intrinsically tied to the trust we can put in the origins and quality of the underlying data. In this paper, we address both sides of trust and Big Data by structuring the problem domain and presenting current research directions and inter-dependencies. Based on this, we define focal issues which serve as future research directions for the track to our vision of Next Generation Online Trust within the FORSEC project.
 

2015-05-01
Mehdi, Mohamad, Bouguila, Nizar, Bentahar, Jamal.  2014.  Correlated Multi-dimensional Qos Metrics for Trust Evaluation Within Web Services. Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems. :1605–1606.

Trust and reputation techniques have offered favorable solutions to the web service selection problem. In distributed systems, service consumers identify pools of service providers that offer similar functionalities. Therefore, the selection task is mostly influenced by the non-functional requirements of the consumers captured by a varied number of QoS metrics. In this paper, we present a QoS-aware trust model that leverages the correlation information among various QoS metrics. We compute the trustworthiness of web services based on probability theory by exploiting two statistical distributions, namely, Dirichlet and generalized Dirichlet, which represent the distributions of the outcomes of multi-dimensional correlated QoS metrics. We employ the Dirichlet and generalized Dirichlet when the QoS metrics are positively or negatively correlated, respectively. Experimental results endorse the advantageous capability of our model in capturing the correlation among QoS metrics and estimating the trustworthiness and reputation of service providers.