Biblio
Cybersecurity of the supervisory control and data acquisition (SCADA) system, which is the key component of the cyber-physical systems (CPS), is facing big challenges and will affect the reliability of the smart grid. System reliability can be influenced by various cyber threats. In this paper, the reliability of the electric power system considering different cybersecurity issues in the SCADA system is analyzed by using Semi-Markov Process (SMP) and mean time-to-compromise (MTTC). External and insider attacks against the SCADA system are investigated with the SMP models and the results are compared. The system reliability is evaluated by reliability indexes including loss of load probability (LOLP) and expected energy not supplied (EENS) through Monte Carlo Simulations (MCS). The lurking threats of the cyberattacks are also analyzed in the study. Case studies were conducted on the IEEE Reliability Test System (RTS-96). The results show that with the increase of the MTTCs of the cyberattacks, the LOLP values decrease. When insider attacks are considered, both the LOLP and EENS values dramatically increase owing to the decreased MTTCs. The results provide insights into the establishment of the electric power system reliability enhancement strategies.
Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.
To reduce cost and ease maintenance, industrial control systems (ICS) have adopted Ethernetbased interconnections that integrate operational technology (OT) systems with information technology (IT) networks. This integration has made these critical systems vulnerable to attack. Security solutions tailored to ICS environments are an active area of research. Anomalybased network intrusion detection systems are well-suited for these environments. Often these systems must be optimized for their specific environment. In prior work, we introduced a method for assessing the impact of various anomaly-based network IDS settings on security. This paper reviews the experimental outcomes when we applied our method to a full-scale ICS test bed using actual attacks. Our method provides new and valuable data to operators enabling more informed decisions about IDS configurations.
Device management in large networks is of growing importance to network administrators and security analysts alike. The composition of devices on a network can help forecast future traffic demand as well as identify devices that may pose a security risk. However, the sheer number and diversity of devices that comprise most modern networks have vastly increased the management complexity. Motivated by a need for an encryption-invariant device management strategy, we use affiliation graphs to develop a methodology that reveals key insights into the devices acting on a network using only the source and destination IP addresses. Through an empirical analysis of the devices on a university campus network, we provide an example methodology to infer a device's characteristics (e.g., operating system) through the services it communicates with via the Internet.
The security of Industrial Control system (ICS) of cybersecurity networks ensures that control equipment fails and that regular procedures are available at its control facilities and internal industrial network. For this reason, it is essential to improve the security of industrial control facility networks continuously. Since network security is threatening, industrial installations are irreparable and perhaps environmentally hazardous. In this study, the industrialized Early Intrusion Detection System (EIDS) was used to modify the Intrusion Detection System (IDS) method. The industrial EIDS was implemented using routers, IDS Snort, Industrial honeypot, and Iptables MikroTik. EIDS successfully simulated and implemented instructions written in IDS, Iptables router, and Honeypots. Accordingly, the attacker's information was displayed on the monitoring page, which had been designed for the ICS. The EIDS provides cybersecurity and industrial network systems against vulnerabilities and alerts industrial network security heads in the shortest possible time.
Security model is an important subject in the field of low energy independence complexity theory. It takes security strategy as the core, changes the system from static protection to dynamic protection, and provides the basis for the rapid response of the system. A large number of empirical studies have been conducted to verify the cache consistency. The development of object oriented language is pure object oriented language, and the other is mixed object oriented language, that is, adding class, inheritance and other elements in process language and other languages. This paper studies a new object-oriented language application, namely GUT for a write-back cache, which is based on the study of simulation algorithm to solve all these challenges in the field of low energy independence complexity theory.
Industrial networks are the cornerstone of modern industrial control systems. Performing security checks of industrial communication processes helps detect unknown risks and vulnerabilities. Fuzz testing is a widely used method for performing security checks that takes advantage of automation. However, there is a big challenge to carry out security checks on industrial network due to the increasing variety and complexity of industrial communication protocols. In this case, existing approaches usually take a long time to model the protocol for generating test cases, which is labor-intensive and time-consuming. This becomes even worse when the target protocol is stateful. To help in addressing this problem, we employed a deep learning model to learn the structures of protocol frames and deal with the temporal features of stateful protocols. We propose a fuzzing framework named SeqFuzzer which automatically learns the protocol frame structures from communication traffic and generates fake but plausible messages as test cases. For proving the usability of our approach, we applied SeqFuzzer to widely-used Ethernet for Control Automation Technology (EtherCAT) devices and successfully detected several security vulnerabilities.
The rapid development of mobile networks has revolutionized the way of accessing the Internet. The exponential growth of mobile subscribers, devices and various applications frequently brings about excessive traffic in mobile networks. The demand for higher data rates, lower latency and seamless handover further drive the demand for the improved mobile network design. However, traditional methods can no longer offer cost-efficient solutions for better user quality of experience with fast time-to-market. Recent work adopts SDN in LTE core networks to meet the requirement. In these software defined LTE core networks, scalability and security become important design issues that must be considered seriously. In this paper, we propose a scalable channel security scheme for the software defined LTE core network. It applies the VxLAN for scalable tunnel establishment and MACsec for security enhancement. According to our evaluation, the proposed scheme not only enhances the security of the channel communication between different network components, but also improves the flexibility and scalability of the core network with little performance penalty. Moreover, it can also shed light on the design of the next generation cellular network.
The increasing deployment of smart meters at individual households has significantly improved people's experience in electricity bill payments and energy savings. It is, however, still challenging to guarantee the accurate detection of attacked meters' behaviors as well as the effective preservation of users'privacy information. In addition, rare existing research studies jointly consider both these two aspects. In this paper, we propose a Privacy-Preserving energy Theft Detection scheme (PPTD) to address the energy theft behaviors and information privacy issues in smart grid. Specifically, we use a recursive filter based on state estimation to estimate the user's energy consumption, and detect the abnormal data. During data transmission, we use the lightweight NTRU algorithm to encrypt the user's data to achieve privacy preservation. Security analysis demonstrates that in the PPTD scheme, only authorized units can transmit/receive data, and data privacy are also preserved. The performance evaluation results illustrate that our PPTD scheme can significantly reduce the communication and computation costs, and effectively detect abnormal users.
An air-gapped network is a type of IT network that is separated from the Internet - physically - due to the sensitive information it stores. Even if such a network is compromised with a malware, the hermetic isolation from the Internet prevents an attacker from leaking out any data - thanks to the lack of connectivity. In this paper we show how attackers can covertly leak sensitive data from air-gapped networks via the row of status LEDs on networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device (‘side-channel'), malware controlling the status LEDs to carry any type of data (‘covert-channel') has never studied before. Sensitive data can be covertly encoded over the blinking of the LEDs and received by remote cameras and optical sensors. A malicious code is executed in a compromised LAN switch or router allowing the attacker direct, low-level control of the LEDs. We provide the technical background on the internal architecture of switches and routers at both the hardware and software level which enables these attacks. We present different modulation and encoding schemas, along with a transmission protocol. We implement prototypes of the malware and discuss its design and implementation. We tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and discuss detection and prevention countermeasures. Our experiments show that sensitive data can be covertly leaked via the status LEDs of switches and routers at bit rates of 1 bit/sec to more than 2000 bit/sec per LED.
Due to the proliferation of reprogrammable hardware, core designs built from modules drawn from a variety of sources execute with direct access to critical system resources. Expressing guarantees that such modules satisfy, in particular the dynamic conditions under which they release information about their unbounded streams of inputs, and automatically proving that they satisfy such guarantees, is an open and critical problem.,,To address these challenges, we propose a domain-specific language, named STREAMS, for expressing information-flow policies with declassification over unbounded input streams. We also introduce a novel algorithm, named SIMAREL, that given a core design C and STREAMS policy P, automatically proves or falsifies that C satisfies P. The key technical insight behind the design of SIMAREL is a novel algorithm for efficiently synthesizing relational invariants over pairs of circuit executions.,,We expressed expected behavior of cores designed independently for research and production as STREAMS policies and used SIMAREL to check if each core satisfies its policy. SIMAREL proved that half of the cores satisfied expected behavior, but found unexpected information leaks in six open-source designs: an Ethernet controller, a flash memory controller, an SD-card storage manager, a robotics controller, a digital-signal processing (DSP) module, and a debugging interface.
In this paper, an industrial testbed is proposed utilizing commercial-off-the-shelf equipment, and it is used to study the weakness of industrial Ethernet, i.e., PROFINET. The investigation is based on observation of the principles of operation of PROFINET and the functionality of industrial control systems.
Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non- linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non- homogeneous features.
This paper describes an experiment carried out to demonstrate robustness and trustworthiness of an orchestrated two-layer network test-bed (PROnet). A Robotic Operating System Industrial (ROS-I) distributed application makes use of end-to-end flow services offered by PROnet. The PROnet Orchestrator is used to provision reliable end-to-end Ethernet flows to support the ROS-I application required data exchange. For maximum reliability, the Orchestrator provisions network resource redundancy at both layers, i.e., Ethernet and optical. Experimental results show that the robotic application is not interrupted by a fiber outage.
This work presents the proof of concept implementation for the first hardware-based design of Moving Target Defense over IPv6 (MT6D) in full Register Transfer Level (RTL) logic, with future sights on an embedded Application-Specified Integrated Circuit (ASIC) implementation. Contributions are an IEEE 802.3 Ethernet stream-based in-line network packet processor with a specialized Complex Instruction Set Computer (CISC) instruction set architecture, RTL-based Network Time Protocol v4 synchronization, and a modular crypto engine. Traditional static network addressing allows attackers the incredible advantage of taking time to plan and execute attacks against a network. To counter, MT6D provides a network host obfuscation technique that offers network-based keyed access to specific hosts without altering existing network infrastructure and is an excellent technique for protecting the Internet of Things, IPv6 over Low Power Wireless Personal Area Networks, and high value globally routable IPv6 interfaces. This is done by crypto-graphically altering IPv6 network addresses every few seconds in a synchronous manner at all endpoints. A border gateway device can be used to intercept select packets to unobtrusively perform this action. Software driven implementations have posed many challenges, namely, constant code maintenance to remain compliant with all library and kernel dependencies, the need for a host computing platform, and less than optimal throughput. This work seeks to overcome these challenges in a lightweight system to be developed for practical wide deployment.