Visible to the public Biblio

Filters: Keyword is Regulation  [Clear All Filters]
2023-09-01
Musa, Nura Shifa, Mirza, Nada Masood, Ali, Adnan.  2022.  Current Trends in Internet of Things Forensics. 2022 International Arab Conference on Information Technology (ACIT). :1—5.
Digital forensics is essential when performing in-depth crime investigations and evidence extraction, especially in the field of the Internet of Things, where there is a ton of information every second boosted with latest and smartest technological devices. However, the enormous growth of data and the nature of its complexity could constrain the data examination process since traditional data acquisition techniques are not applicable nowadays. Therefore, if the knowledge gap between digital forensics and the Internet of Things is not bridged, investigators will jeopardize the loss of a possible rich source of evidence that otherwise could act as a lead in solving open cases. The work aims to introduce examples of employing the latest Internet of Things forensics approaches as a panacea in this regard. The paper covers a variety of articles presenting the new Blockchain, fog, and video-based applications that can aid in easing the process of digital forensics investigation with a focus on the Internet of Things. The results of the review indicated that the above current trends are very promising procedures in the field of Internet of Things digital forensics and need to be explored and applied more actively.
2023-07-28
Bhande, Sapana A, Chandrakar, V. K..  2022.  Fuzzy Logic based Static Synchronous Series Compensator (SSSC) to enhance Power System Security. 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET). :667—672.
In today's power market, it's vital to keep electrical energy affordable to the vast majority of people while maintaining the highest degree of dependability. Due to which, the transmission network must operate beyond transfer limitations, generating congestion on transmission lines. These transmission line difficulties can be alleviated with the use of reactive power adjustment based on FACTS devices. Using a fuzzy tuned Static Synchronous Series Compensator [SSSC], this research proposes a novel method for calculating the effective damping oscillation control signals. The performance of the SSSC is compared to that of fuzzy logic-based controllers using PI controllers. According to the simulation results, the SSSC with fuzzy logic control effectively improves power flow under disrupted conditions
2023-06-22
Kivalov, Serhii, Strelkovskaya, Irina.  2022.  Detection and prediction of DDoS cyber attacks using spline functions. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :710–713.
The issues of development and legal regulation of cybersecurity in Ukraine are considered. The expediency of further improvement of the regulatory framework, its implementation and development of cybersecurity systems is substantiated. Further development of the theoretical base of cyber defense using spline functions is proposed. The characteristics of network traffic are considered from the point of view of detecting DDoS cyber attacks (SYN-Flood, ICMP-Flood, UDP-Flood) and predicting DDoS cyber-attacks using spline functions. The spline extrapolation method makes it possible to predict DDoS cyber attacks with great accuracy.
2023-06-09
Sundararajan, Vijay, Ghodousi, Arman, Dietz, J. Eric.  2022.  The Most Common Control Deficiencies in CMMC non-compliant DoD contractors. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1—7.
As cyber threats become highly damaging and complex, a new cybersecurity compliance certification model has been developed by the Department of Defense (DoD) to secure its Defense Industrial Base (DIB), and communication with its private partners. These partners or contractors are obligated by the Defense Federal Acquisition Regulations (DFARS) to be compliant with the latest standards in computer and data security. The Cybersecurity Maturity Model Certification (CMMC), and it is built upon existing DFARS 252.204-7012 and the NIST SP 800–171 controls. As of 2020, the DoD has incorporated DFARS and the National Institute of Standards and Technology (NIST) recommended security practices into what is now the CMMC. This paper presents the most commonly identified Security-Control-Deficiencies (SCD) faced, the attacks mitigated by addressing these SCD, and remediations applied to 127 DoD contractors in order to bring them into compliance with the CMMC guidelines. An analysis is done on what vulnerabilities are most prominent in the companies, and remediations applied to ensure these vulnerabilities are better avoided and the DoD supply-chain is more secure from attacks.
2023-05-12
Matsubayashi, Masaru, Koyama, Takuma, Tanaka, Masashi, Okano, Yasushi, Miyajima, Asami.  2022.  Message Source Identification in Controller Area Network by Utilizing Diagnostic Communications and an Intrusion Detection System. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–6.
International regulations specified in WP.29 and international standards specified in ISO/SAE 21434 require security operations such as cyberattack detection and incident responses to protect vehicles from cyberattacks. To meet these requirements, many vehicle manufacturers are planning to install Intrusion Detection Systems (IDSs) in the Controller Area Network (CAN), which is a primary component of in-vehicle networks, in the coming years. Besides, many vehicle manufacturers and information security companies are developing technologies to identify attack paths related to IDS alerts to respond to cyberattacks appropriately and quickly. To develop the IDSs and the technologies to identify attack paths, it is essential to grasp normal communications performed on in-vehicle networks. Thus, our study aims to develop a technology that can easily grasp normal communications performed on in-vehicle networks. In this paper, we propose the first message source identification method that easily identifies CAN-IDs used by each Electronic Control Unit (ECU) connected to the CAN for message transmissions. We realize the proposed method by utilizing diagnostic communications and an IDS installed in the CAN (CAN-IDS). We evaluate the proposed method using an ECU installed in an actual vehicle and four kinds of simulated CAN-IDSs based on typical existing intrusion detection methods for the CAN. The evaluation results show that the proposed method can identify the CAN-ID used by the ECU for CAN message transmissions if a suitable simulated CAN-IDS for the proposed method is connected to the vehicle.
ISSN: 2577-2465
2023-03-17
Kamil, Samar, Siti Norul, Huda Sheikh Abdullah, Firdaus, Ahmad, Usman, Opeyemi Lateef.  2022.  The Rise of Ransomware: A Review of Attacks, Detection Techniques, and Future Challenges. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–7.
Cybersecurity is important in the field of information technology. One most recent pressing issue is information security. When we think of cybersecurity, the first thing that comes to mind is cyber-attacks, which are on the rise, such as Ransomware. Various governments and businesses take a variety of measures to combat cybercrime. People are still concerned about ransomware, despite numerous cybersecurity precautions. In ransomware, the attacker encrypts the victim’s files/data and demands payment to unlock the data. Cybersecurity is a collection of tools, regulations, security guards, security ideas, guidelines, risk management, activities, training, insurance, best practices, and technology used to secure the cyber environment, organization, and user assets. This paper analyses ransomware attacks, techniques for dealing with these attacks, and future challenges.
2023-02-17
Cobos, Luis-Pedro, Miao, Tianlei, Sowka, Kacper, Madzudzo, Garikayi, Ruddle, Alastair R., El Amam, Ehab.  2022.  Application of an Automotive Assurance Case Approach to Autonomous Marine Vessel Security. 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1–9.
The increase of autonomy in autonomous surface vehicles development brings along modified and new risks and potential hazards, this in turn, introduces the need for processes and methods for ensuring that systems are acceptable for their intended use with respect to dependability and safety concerns. One approach for evaluating software requirements for claims of safety is to employ an assurance case. Much like a legal case, the assurance case lays out an argument and supporting evidence to provide assurance on the software requirements. This paper analyses safety and security requirements relating to autonomous vessels, and regulations in the automotive industry and the marine industry before proposing a generic cybersecurity and safety assurance case that takes a general graphical approach of Goal Structuring Notation (GSN).
Zehnder, E., Dinet, J., Charpillet, F..  2022.  Perception of physical and virtual agents: exploration of factors influencing the acceptance of intrusive domestic agents. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :1050–1057.
Domestic robots and agents are widely sold to the grand public, leading us to ethical issues related to the data harvested by such machines. While users show a general acceptance of these robots, concerns remain when it comes to information security and privacy. Current research indicates that there’s a privacy-security trade-off for better use, but the anthropomorphic and social abilities of a robot are also known to modulate its acceptance and use. To explore and deepen what literature already brought on the subject we examined how users perceived their robot (Replika, Roomba©, Amazon Echo©, Google Home©, or Cozmo©/Vector©) through an online questionnaire exploring acceptance, perceived privacy and security, anthropomorphism, disclosure, perceived intimacy, and loneliness. The results supported the literature regarding the potential manipulative effects of robot’s anthropomorphism for acceptance but also information disclosure, perceived intimacy, security, and privacy.
ISSN: 1944-9437
2023-01-20
Zobiri, Fairouz, Gama, Mariana, Nikova, Svetla, Deconinck, Geert.  2022.  A Privacy-Preserving Three-Step Demand Response Market Using Multi-Party Computation. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.

Demand response has emerged as one of the most promising methods for the deployment of sustainable energy systems. Attempts to democratize demand response and establish programs for residential consumers have run into scalability issues and risks of leaking sensitive consumer data. In this work, we propose a privacy-friendly, incentive-based demand response market, where consumers offer their flexibility to utilities in exchange for a financial compensation. Consumers submit encrypted offer which are aggregated using Computation Over Encrypted Data to ensure consumer privacy and the scalability of the approach. The optimal allocation of flexibility is then determined via double-auctions, along with the optimal consumption schedule for the users with respect to the day-ahead electricity prices, thus also shielding participants from high electricity prices. A case study is presented to show the effectiveness of the proposed approach.

2023-01-13
Liu, Xingye, Ampadu, Paul.  2022.  A Scalable Single-Input-Multiple-Output DC/DC Converter with Enhanced Load Transient Response and Security for Low-Power SoCs. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :1497–1501.
This paper presents a scalable single-input-multiple-output DC/DC converter targeting load transient response and security improvement for low-power System-on-Chips (SoCs). A two-stage modular architecture is introduced to enable scalability. The shared switched-capacitor pre-charging circuits are implemented to improve load transient response and decouple correlations between inputs and outputs. The demo version of the converter has three identical outputs, each supporting 0.3V to 0.9V with a maximum load current of 150mA. Based on post-layout simulation results in 32nm CMOS process, the converter output provides 19.3V/μs reference tracking speed and 27mA/ns workload transitions with negligible voltage droops or spikes. No cross regulation is observed at any outputs with a worst-case voltage ripple of 68mV. Peak efficiency reaches 85.5% for each output. With variable delays added externally, the input-output correlations can change 10 times and for steady-state operation, such correlation factors are always kept below 0.05. The converter is also scaled to support 6 outputs with only 0.56mm2 more area and maintains same load transient response performance.
2023-01-06
Banciu, Doina, Cîrnu, Carmen Elena.  2022.  AI Ethics and Data Privacy compliance. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1—5.
Throughout history, technological evolution has generated less desired side effects with impact on society. In the field of IT&C, there are ongoing discussions about the role of robots within economy, but also about their impact on the labour market. In the case of digital media systems, we talk about misinformation, manipulation, fake news, etc. Issues related to the protection of the citizen's life in the face of technology began more than 25 years ago; In addition to the many messages such as “the citizen is at the center of concern” or, “privacy must be respected”, transmitted through various channels of different entities or companies in the field of ICT, the EU has promoted a number of legislative and normative documents to protect citizens' rights and freedoms.
2022-12-20
Li, Fang-Qi, Wang, Shi-Lin, Zhu, Yun.  2022.  Fostering The Robustness Of White-Box Deep Neural Network Watermarks By Neuron Alignment. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3049–3053.
The wide application of deep learning techniques is boosting the regulation of deep learning models, especially deep neural networks (DNN), as commercial products. A necessary prerequisite for such regulations is identifying the owner of deep neural networks, which is usually done through the watermark. Current DNN watermarking schemes, particularly white-box ones, are uniformly fragile against a family of functionality equivalence attacks, especially the neuron permutation. This operation can effortlessly invalidate the ownership proof and escape copyright regulations. To enhance the robustness of white-box DNN watermarking schemes, this paper presents a procedure that aligns neurons into the same order as when the watermark is embedded, so the watermark can be correctly recognized. This neuron alignment process significantly facilitates the functionality of established deep neural network watermarking schemes.
2022-11-25
Lin, Wei.  2021.  Network Information Security Management in the Era of Big Data. 2021 2nd International Conference on Information Science and Education (ICISE-IE). :806—809.
With the advent of the era of big data, information technology has been rapidly developed and the application of computers has been popularized. However, network technology is a double-edged sword. While providing convenience, it also faces many problems, among which there are many hidden dangers of network information security. Based on this, based on the era background of big data, the network information security analysis, explore the main network security problems, and elaborate computer information network security matters needing attention, to strengthen the network security management, and put forward countermeasures, so as to improve the level of network security.
2022-11-18
Wang, XinRui, Luo, Wei, Bai, XiaoLi, Wang, Yi.  2021.  Research on Big Data Security and Privacy Risk Governance. 2021 International Conference on Big Data, Artificial Intelligence and Risk Management (ICBAR). :15—18.
In the era of Big Data, opportunities and challenges are mixed. The data transfer is increasingly frequent and speedy, and the data lifecycle is also extended, bringing more challenges to security and privacy risk governance. Currently, the common measures of risk governance covering the entire data life cycle are the data-related staff management, equipment security management, data encryption codes, data content identification and de-identification processing, etc. With the trend of data globalization, regulations fragmentation and governance technologization, “International standards”, a measure of governance combining technology and regulation, has the potential to become the best practice. However, “voluntary compliance” of international standards derogates the effectiveness of risk governance through this measure. In order to strengthen the enforcement of the international standards, the paper proposes a governance approach which is “the framework regulated by international standards, and regulations and technologies specifically implemented by national legislation.” It aims to implement the security and privacy risk governance of Big Data effectively.
2022-10-20
Thorpe, Adam J., Oishi, Meeko M. K..  2021.  Stochastic Optimal Control via Hilbert Space Embeddings of Distributions. 2021 60th IEEE Conference on Decision and Control (CDC). :904—911.
Kernel embeddings of distributions have recently gained significant attention in the machine learning community as a data-driven technique for representing probability distributions. Broadly, these techniques enable efficient computation of expectations by representing integral operators as elements in a reproducing kernel Hilbert space. We apply these techniques to the area of stochastic optimal control theory and present a method to compute approximately optimal policies for stochastic systems with arbitrary disturbances. Our approach reduces the optimization problem to a linear program, which can easily be solved via the Lagrangian dual, without resorting to gradient-based optimization algorithms. We focus on discrete- time dynamic programming, and demonstrate our proposed approach on a linear regulation problem, and on a nonlinear target tracking problem. This approach is broadly applicable to a wide variety of optimal control problems, and provides a means of working with stochastic systems in a data-driven setting.
2022-10-16
LaMalva, Grace, Schmeelk, Suzanna.  2020.  MobSF: Mobile Health Care Android Applications Through The Lens of Open Source Static Analysis. 2020 IEEE MIT Undergraduate Research Technology Conference (URTC). :1–4.
Data security has become an increasing concern with rampant data security regulation changes and the rampant deployment of technology. The necessity to lock down user data has never been greater. This research contributes to the secure software development of Android applications by identifying data processing concerns following the guidelines put forth by the Open Web Application Security Project “(OWASP) Mobile Top 10.” We found that 43.62% of the applications contained at least one security violation. We will be using an open source tool static analysis tool, MobSF, to review the security of 200 health related Android applications. The security of healthcare related applications should be given special attention, as they store and process highly sensitive information such as blood pressures, pulse rate, body photos, mental-state, OBGYN status, and sleep patterns. Partial automation techniques were utilized. This paper also suggests possible security remediations for the identified security concerns.
2022-10-03
Zhang, Shimei, Yan, Pingyan.  2021.  The Challenge of Copyright Protection of Artificial Intelligence Products to the Field of Intellectual Property Legislation Based on Information Technology. 2021 International Conference on Forthcoming Networks and Sustainability in AIoT Era (FoNeS-AIoT). :275–279.
The rise of artificial intelligence plays an important role in social progress and economic development, which is a hot topic in the Internet industry. In the past few years, the Chinese government has vigorously increased policy support to promote the golden age of artificial intelligence. However, with the rapid development of artificial intelligence, the copyright protection and intellectual property legislation of artificial intelligence products have brought some challenges.
2022-09-09
Jayaprasanna, M.C., Soundharya, V.A., Suhana, M., Sujatha, S..  2021.  A Block Chain based Management System for Detecting Counterfeit Product in Supply Chain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :253—257.

In recent years, Counterfeit goods play a vital role in product manufacturing industries. This Phenomenon affects the sales and profit of the companies. To ensure the identification of real products throughout the supply chain, a functional block chain technology used for preventing product counterfeiting. By using a block chain technology, consumers do not need to rely on the trusted third parties to know the source of the purchased product safely. Any application that uses block chain technology as a basic framework ensures that the data content is “tamper-resistant”. In view of the fact that a block chain is the decentralized, distributed and digital ledger that stores transactional records known as blocks of the public in several databases known as chain across many networks. Therefore, any involved block cannot be changed in advance, without changing all subsequent block. In this paper, counterfeit products are detected using barcode reader, where a barcode of the product linked to a Block Chain Based Management (BCBM) system. So the proposed system may be used to store product details and unique code of that product as blocks in database. It collects the unique code from the customer and compares the code against entries in block chain database. If the code matches, it will give notification to the customer, otherwise it gets information from the customer about where they bought the product to detect counterfeit product manufacturer.

Zhang, Junwei, Liu, Jiaqi, Zhu, Yujie, He, Fan, Feng, Su, Li, Jing.  2021.  Whole-chain supervision method of industrial product quality and safety based on knowledge graph. 2021 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI). :74—78.
With the rapid improvement of China's industrial production level, there are an increasing number of industrial enterprises and kinds of products. The quality and safety supervision of industrial products is an important step to ensure people's livelihood safety. The current supervision includes a number of processes, such as risk monitoring, public opinion analysis, supervision, spot check and postprocessing. The lack of effective information integration and sharing between the above processes cannot support the implementation of whole-chain regulation well. This paper proposes a whole-chain supervision method of industrial product quality and safety based on a knowledge graph, which integrates massive and complex data of the whole chain and visually displays the relationships between entities in the regulatory process. This method can effectively solve the problem of information islands and track and locate the quality problems of large-scale industrial products.
2022-07-01
Banse, Christian, Kunz, Immanuel, Schneider, Angelika, Weiss, Konrad.  2021.  Cloud Property Graph: Connecting Cloud Security Assessments with Static Code Analysis. 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). :13—19.
In this paper, we present the Cloud Property Graph (CloudPG), which bridges the gap between static code analysis and runtime security assessment of cloud services. The CloudPG is able to resolve data flows between cloud applications deployed on different resources, and contextualizes the graph with runtime information, such as encryption settings. To provide a vendorand technology-independent representation of a cloud service's security posture, the graph is based on an ontology of cloud resources, their functionalities and security features. We show, using an example, that our CloudPG framework can be used by security experts to identify weaknesses in their cloud deployments, spanning multiple vendors or technologies, such as AWS, Azure and Kubernetes. This includes misconfigurations, such as publicly accessible storages or undesired data flows within a cloud service, as restricted by regulations such as GDPR.
2022-06-10
Ramachandran, Gowri Sankar, Deane, Felicity, Malik, Sidra, Dorri, Ali, Jurdak, Raja.  2021.  Towards Assisted Autonomy for Supply Chain Compliance Management. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :321–330.

In an agricultural supply chain, farmers, food processors, transportation agencies, importers, and exporters must comply with different regulations imposed by one or more jurisdictions depending on the nature of their business operations. Supply chain stakeholders conventionally transport their goods, along with the corresponding documentation via regulators for compliance checks. This is generally followed by a tedious and manual process to ensure the goods meet regulatory requirements. However, supply chain systems are changing through digitization. In digitized supply chains, data is shared with the relevant stakeholders through digital supply chain platforms, including blockchain technology. In such datadriven digital supply chains, the regulators may be able to leverage digital technologies, such as artificial intelligence and machine learning, to automate the compliance verification process. However, a barrier to progress is the risk that information will not be credible, thus reversing the gains that automation could achieve. Automating compliance based on inaccurate data may compromise the safety and credibility of the agricultural supply chain, which discourages regulators and other stakeholders from adopting and relying on automation. Within this article we consider the challenges of digital supply chains when we describe parts of the compliance management process and how it can be automated to improve the operational efficiency of agricultural supply chains. We introduce assisted autonomy as a means to pragmatically automate the compliance verification process by combining the power of digital systems while keeping the human in-the-loop. We argue that autonomous compliance is possible, but that the need for human led inspection processes will never be replaced by machines, however it can be minimised through “assisted autonomy”.

2022-04-18
Bonatti, Piero A., Sauro, Luigi, Langens, Jonathan.  2021.  Representing Consent and Policies for Compliance. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :283–291.
Being compliant with the GDPR (and data protection regulations in general) is a difficult task, that calls for manifold, computer-based automated support. In this context, several use cases related to the management and the enforcement of privacy policies and consent call for a machine-understandable policy language, equipped with reliable algorithms for compliance checking and explanations. In this paper, we outline a set of requirements for such languages and algorithms, and address such requirements with a framework based on a profile of OWL2 and a set of policy serializations based on popular formats such as ODRL and JSON. Such ``external'' policy syntax is translated into the ``internal'' OWL2 syntax, thereby enabling semantic compliance checking and explanations using specialized OWL2 reasoners. We provide a precise definition of both the OWL2 profile and the external policy language based on JSON.
Chin, Won Yoon, Chua, Hui Na.  2021.  Using the Theory of Interpersonal Behavior to Predict Information Security Policy Compliance. 2021 Eighth International Conference on eDemocracy eGovernment (ICEDEG). :80–87.

Employees' compliance with information security policies (ISP) which may minimize the information security threats has always been a major concern for organizations. Numerous research and theoretical models had been investigated in the related field of study to identify factors that influence ISP compliance behavior. The study presented in this paper is the first to apply the Theory of Interpersonal Behavior (TIB) for predicting ISP compliance, despite a few studies suggested its strong explanatory power. Taking on the prior results of the literature review, we adopt the TIB and aim to further the theoretical advancement in this field of study. Besides, previous studies had only focused on individuals as well as organizations in which the role of government, from the aspect of its effectiveness in enforcing data protection regulation, so far has not been tested on its influence on individuals' intention to comply with ISP. Hence, we propose an exploratory study to integrate government effectiveness with TIB to explain ISP compliance in a Malaysian context. Our results show a significant influence of government effectiveness in ISP compliance, and the TIB is a promising model as well as posing strong explanatory power in predicting ISP compliance.

Yin, Yi, Tateiwa, Yuichiro, Zhang, Guoqiang, Wang, Yun.  2021.  Consistency Decision Between IPv6 Firewall Policy and Security Policy. 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). :577–581.

Firewall is the first defense line for network security. Packet filtering is a basic function in firewall, which filter network packets according to a series of rules called firewall policy. The design of firewall policy is invariably under the instruction of security policy, which is a generic guideline that lists the needs for network access permissions. The design of firewall policy should observe the regulations of security policy. However, even for IPv4 firewall policy, it is extremely difficult to keep the consistency between security policy and firewall policy. Some consistency decision methods of security policy and IPv4 firewall policy were proposed. However, the address space of IPv6 address is a very large, the existing consistency decision methods can not be directly used to deal with IPv6 firewall policy. To resolve the above problem, in this paper, we use a formal technique to decide the consistency between IPv6 firewall policy and security policy effectively and rapidly. We also developed a prototype model and evaluated the effectiveness of the proposed method.

2022-04-13
Kovalchuk, Olha, Shynkaryk, Mykola, Masonkova, Mariia.  2021.  Econometric Models for Estimating the Financial Effect of Cybercrimes. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :381–384.
Technological progress has changed our world beyond recognition. However, along with the incredible benefits and conveniences we have received new dangers and risks. Mankind is increasingly becoming hostage to information technology and cyber world. Recently, cybercrime is one of the top 10 risks to sustainable development in the world. It poses serious new challenges to global security and economy. The aim of the article is to obtain an assessment of some of the financial effects of modern IT crimes based on an analysis of the main aspects of monetary costs and the hidden economic impact of cybercrime. A multifactor regression model has been proposed to determine the contribution of the cost of the main consequences of IT incidents: business disruption, information loss, revenue loss and equipment damage caused by different types of cyberattacks worldwide in 2019 to total cost of cyberattacks. Information loss has been found to have a major impact on the total cost of cyberattacks, reducing profits and incurring additional costs for businesses. It was built a canonical model for identifying the dependence of total submission to ID ransomware, total cost of cybercrime and the main indicators of economic development for the TOP-10 countries. There is a significant correlation between two sets of indicators, in particular, it is confirmed that most cyberattacks target countries - countries with a high level of development, and the consequences of IT crimes are more significant for low-income countries.