Visible to the public Biblio

Found 124 results

Filters: Keyword is Cameras  [Clear All Filters]
2023-04-28
Bálint, Krisztián.  2022.  Data Security Structure of a Students’ Attendance Register Based on Security Cameras and Blockchain Technology. 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo). :000185–000190.
The latest, modern security camera systems record numerous data at once. With the utilization of artificial intelligence, these systems can even compose an online attendance register of students present during the lectures. Data is primarily recorded on the hard disk of the NVR (Network Video Recorder), and in the long term, it is recommended to save the data in the blockchain. The purpose of the research is to demonstrate how university security cameras can be securely connected to the blockchain. This would be important for universities as this is sensitive student data that needs to be protected from unauthorized access. In my research, as part of the practical implementation, I therefore also use encryption methods and data fragmentation, which are saved at the nodes of the blockchain. Thus, even a DDoS (Distributed Denial of Service) type attack may be easily repelled, as data is not concentrated on a single, central server. To further increase security, it is useful to constitute a blockchain capable of its own data storage at the faculty itself, rather than renting data storage space, so we, ourselves may regulate the conditions of operation, and the policy of data protection. As a practical part of my research, therefore, I created a blockchain called UEDSC (Universities Data Storage Chain) where I saved the student's data.
ISSN: 2471-9269
Pham, Quang Duc, Hayasaki, Yoshio.  2022.  Time of flight three-dimensional imaging camera using compressive sampling technique with sparse frequency intensity modulation light source. 2022 IEEE CPMT Symposium Japan (ICSJ). :168–171.
The camera constructed by a megahertz range intensity modulation active light source and a kilo-frame rate range fast camera based on compressive sensing (CS) technique for three-dimensional (3D) image acquisition was proposed in this research.
ISSN: 2475-8418
2023-04-14
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
2023-03-06
Mallik, Abhidipta, Kapila, Vikram.  2020.  Interactive Learning of Mobile Robots Kinematics Using ARCore. 2020 5th International Conference on Robotics and Automation Engineering (ICRAE). :1–6.
Recent years have witnessed several educational innovations to provide effective and engaging classroom instruction with the integration of immersive interactions based on augmented reality and virtual reality (AR/VR). This paper outlines the development of an ARCore-based application (app) that can impart interactive experiences for hands-on learning in engineering laboratories. The ARCore technology enables a smartphone to sense its environment and detect horizontal and vertical surfaces, thus allowing the smartphone to estimate any position in its workspace. In this mobile app, with touch-based interaction and AR feedback, the user can interact with a wheeled mobile robot and reinforce the concepts of kinematics for a differential drive mobile robot. The user experience is evaluated and system performance is validated through a user study with participants. The assessment shows that the proposed AR interface for interacting with the experimental setup is intuitive, easy to use, exciting, and recommendable.
2023-02-03
Doshi, Om B., Bendale, Hitesh N., Chavan, Aarti M., More, Shraddha S..  2022.  A Smart Door Lock Security System using Internet of Things. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1457–1463.
Security is a key concern across the world, and it has been a common thread for all critical sectors. Nowadays, it may be stated that security is a backbone that is absolutely necessary for personal safety. The most important requirements of security systems for individuals are protection against theft and trespassing. CCTV cameras are often employed for security purposes. The biggest disadvantage of CCTV cameras is their high cost and the need for a trustworthy individual to monitor them. As a result, a solution that is both easy and cost-effective, as well as secure has been devised. The smart door lock is built on Raspberry Pi technology, and it works by capturing a picture through the Pi Camera module, detecting a visitor's face, and then allowing them to enter. Local binary pattern approach is used for Face recognition. Remote picture viewing, notification, on mobile device are all possible with an IOT based application. The proposed system may be installed at front doors, lockers, offices, and other locations where security is required. The proposed system has an accuracy of 89%, with an average processing time is 20 seconds for the overall process.
2023-01-06
Guri, Mordechai.  2022.  ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
2022-12-20
Kawade, Alisa, Chujo, Wataru, Kobayashi, Kentaro.  2022.  Smartphone screen to camera uplink communication with enhanced physical layer security by low-luminance space division multiplexing. 2022 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :176–180.
To achieve secure uplink communication from smartphones’ screen to a telephoto camera at a long distance of 3.5 meters, we demonstrate that low-luminance space division multiplexing screen is effective in enhancement of the physical layer security. First, a numerical model shows that the spatial inter-symbol interference caused by space division multiplexing prevents eavesdropping from a wide angle by the camera. Second, wide-angle characteristics of the symbol error rate and the pixel value distribution are measured to verify the numerical analysis. We experimentally evaluate the difference in the performances from a wide angle depending on the screen luminance and color. We also evaluate the performances at a long distance in front of the screen and a short distance from a wider angle.
2022-05-10
Ji, Xiaoyu, Cheng, Yushi, Zhang, Yuepeng, Wang, Kai, Yan, Chen, Xu, Wenyuan, Fu, Kevin.  2021.  Poltergeist: Acoustic Adversarial Machine Learning against Cameras and Computer Vision. 2021 IEEE Symposium on Security and Privacy (SP). :160–175.
Autonomous vehicles increasingly exploit computer-vision-based object detection systems to perceive environments and make critical driving decisions. To increase the quality of images, image stabilizers with inertial sensors are added to alleviate image blurring caused by camera jitters. However, such a trend opens a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of the emerging image stabilizer hardware susceptible to acoustic manipulation and the object detection algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even if the camera is stable. The blurred images can then induce object misclassification affecting safety-critical decision making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks, i.e., hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against four academic object detectors (YOLO V3/V4/V5 and Fast R-CNN), and one commercial detector (Apollo). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.
2022-05-05
Wei, Xiangxiang, Du, Gao-Ming, Wang, Xiaolei, Cao, Hongfang, Hu, Shijie, Zhang, Duoli, Li, Zhenmin.  2021.  FPGA Implementation of Hardware Accelerator for Real-time Video Image Edge Detection. 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :16—20.
Image edge is considered to be the most important attribute to provide valuable image perception information. At present, video image data is developing towards high resolution and high frame number. The image data processing capacity is huge, so the processing speed is very strict to meet the real-time performance of image data transmission. In this context, we present a method to accelerate the real-time video image edge detection. FPGA is used as the development platform. The real-time edge detection algorithm of image data with 1280x720 resolution and 30 frame/s, combined with median filter, Sobel edge detection algorithm and corrosion expansion algorithm, makes the running time of image processing module shorter. The color image of the video image collected by camera is processed. The HDMI interface shows that the scheme has achieved ideal results in the FPGA hardware platform simulation model, greatly improves the efficiency of the algorithm, and provides a guarantee for the speed and stability of the real-time image processing system.
2022-04-25
Khasanova, Aliia, Makhmutova, Alisa, Anikin, Igor.  2021.  Image Denoising for Video Surveillance Cameras Based on Deep Learning Techniques. 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :713–718.
Nowadays, video surveillance cameras are widely used in many smart city applications for ensuring road safety. We can use video data from them to solve such tasks as traffic management, driving control, environmental monitoring, etc. Most of these applications are based on object recognition and tracking algorithms. However, the video image quality is not always meet the requirements of such algorithms due to the influence of different external factors. A variety of adverse weather conditions produce noise on the images, which often makes it difficult to detect objects correctly. Lately, deep learning methods show good results in image processing, including denoising tasks. This work is devoted to the study of using these methods for image quality enhancement in difficult weather conditions such as snow, rain, fog. Different deep learning techniques were evaluated in terms of their impact on the quality of object detection/recognition. Finally, the system for automatic image denoising was developed.
2022-03-23
Benito-Picazo, Jesús, Domínguez, Enrique, Palomo, Esteban J., Ramos-Jiménez, Gonzalo, López-Rubio, Ezequiel.  2021.  Deep learning-based anomalous object detection system for panoramic cameras managed by a Jetson TX2 board. 2021 International Joint Conference on Neural Networks (IJCNN). :1–7.
Social conflicts appearing in the media are increasing public awareness about security issues, resulting in a higher demand of more exhaustive environment monitoring methods. Automatic video surveillance systems are a powerful assistance to public and private security agents. Since the arrival of deep learning, object detection and classification systems have experienced a large improvement in both accuracy and versatility. However, deep learning-based object detection and classification systems often require expensive GPU-based hardware to work properly. This paper presents a novel deep learning-based foreground anomalous object detection system for video streams supplied by panoramic cameras, specially designed to build power efficient video surveillance systems. The system optimises the process of searching for anomalous objects through a new potential detection generator managed by three different multivariant homoscedastic distributions. Experimental results obtained after its deployment in a Jetson TX2 board attest the good performance of the system, postulating it as a solvent approach to power saving video surveillance systems.
2022-02-03
Rani, V. Usha, Sridevi, J, Sai, P. Mohan.  2021.  Web Controlled Raspberry Pi Robot Surveillance. 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). :1—5.
Security is a major thing to focus on during this modern era as it is very important to secure your surroundings for the well being of oneself and his family, But there are many drawbacks of using conventional security surveillance cameras as they have to be set in a particular angle for good visual and they do not cover a large area, conventional security cameras can only be used from a particular device and cannot alert the user during an unforeseen circumstance. Hence we require a much more efficient device for better security a web controlled surveillance robot is much more practical device to be used compared to conventional security surveillance, this system needs a single camera to perform its operation and the user can monitor a wide range of area, any device with a wireless connection to the internet can be used to operate this device. This robot can move to any location within the range of the network and can be accessed globally from anywhere and as it uses only one camera to secure a large area it is also cost-efficient. At the core of the system lies Raspberry-pi which is responsible for all the operation of the system and the size of the device can be engineered according to the area it is to be used.
2022-01-25
Taspinar, Samet, Mohanty, Manoranjan, Memon, Nasir.  2021.  Effect of Video Pixel-Binning on Source Attribution of Mixed Media. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2545–2549.
Photo Response Non-Uniformity (PRNU) noise obtained from images or videos is used as a camera fingerprint to attribute visual objects captured by a camera. The PRNU-based source attribution method, however, fails when there is misalignment between the fingerprint and the query object. One example of such a misalignment, which has been overlooked in the field, is caused by the in-camera resizing technique that a video may have been subjected to. This paper investigates the attribution of visual media in the context of matching a video query object to an image fingerprint or vice versa. Specifically this paper focuses on improving camera attribution performance by taking into account the effects of binning, a commonly used in-camera resizing technique applied to video. We experimentally show that the True Positive Rate (TPR) obtained when binning is considered is approximately 3% higher.
2021-10-12
Zhong, Zhenyu, Hu, Zhisheng, Chen, Xiaowei.  2020.  Quantifying DNN Model Robustness to the Real-World Threats. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :150–157.
DNN models have suffered from adversarial example attacks, which lead to inconsistent prediction results. As opposed to the gradient-based attack, which assumes white-box access to the model by the attacker, we focus on more realistic input perturbations from the real-world and their actual impact on the model robustness without any presence of the attackers. In this work, we promote a standardized framework to quantify the robustness against real-world threats. It is composed of a set of safety properties associated with common violations, a group of metrics to measure the minimal perturbation that causes the offense, and various criteria that reflect different aspects of the model robustness. By revealing comparison results through this framework among 13 pre-trained ImageNet classifiers, three state-of-the-art object detectors, and three cloud-based content moderators, we deliver the status quo of the real-world model robustness. Beyond that, we provide robustness benchmarking datasets for the community.
2021-08-12
Abbas, Syed Ghazanfar, Husnain, Muhammad, Fayyaz, Ubaid Ullah, Shahzad, Farrukh, Shah, Ghalib A., Zafar, Kashif.  2020.  IoT-Sphere: A Framework to Secure IoT Devices from Becoming Attack Target and Attack Source. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1402—1409.
In this research we propose a framework that will strengthen the IoT devices security from dual perspectives; avoid devices to become attack target as well as a source of an attack. Unlike traditional devices, IoT devices are equipped with insufficient host-based defense system and a continuous internet connection. All time internet enabled devices with insufficient security allures the attackers to use such devices and carry out their attacks on rest of internet. When plethora of vulnerable devices become source of an attack, intensity of such attacks increases exponentially. Mirai was one of the first well-known attack that exploited large number of vulnerable IoT devices, that bring down a large part of Internet. To strengthen the IoT devices from dual security perspective, we propose a two step framework. Firstly, confine the communication boundary of IoT devices; IoT-Sphere. A sphere of IPs that are allowed to communicate with a device. Any communication that violates the sphere will be blocked at the gateway level. Secondly, only allowed communication will be evaluated for potential attacks and anomalies using advance detection engines. To show the effectiveness of our proposed framework, we perform couple of attacks on IoT devices; camera and google home and show the feasibility of IoT-Sphere.
2021-07-07
Kaur, Ketanpreet, Sharma, Vikrant, Sachdeva, Monika.  2020.  Framework for FOGIoT based Smart Video Surveillance System (SVSS). 2020 International Conference on Computational Performance Evaluation (ComPE). :797–799.
In this ever updating digitalized world, everything is connected with just few touches away. Our phone is connected with things around us, even we can see live video of our home, shop, institute or company on the phone. But we can't track suspicious activity 24*7 hence needed a smart system to track down any suspicious activity taking place, so it automatically notifies us before any robbery or dangerous activity takes place. We have proposed a framework to tackle down this security matter with the help of sensors enabled cameras(IoT) connected through a FOG layer hence called FOGIoT which consists of small servers configured with Human Activity Analysis Algorithm. Any suspicious activity analyzed will be reported to responsible personnel and the due action will be taken place.
Elbasi, Ersin.  2020.  Reliable abnormal event detection from IoT surveillance systems. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–5.
Surveillance systems are widely used in airports, streets, banks, military areas, borders, hospitals, and schools. There are two types of surveillance systems which are real-time systems and offline surveillance systems. Usually, security people track videos on time in monitoring rooms to find out abnormal human activities. Real-time human tracking from videos is very expensive especially in airports, borders, and streets due to the huge number of surveillance cameras. There are a lot of research works have been done for automated surveillance systems. In this paper, we presented a new surveillance system to recognize human activities from several cameras using machine learning algorithms. Sequences of images are collected from cameras using the internet of things technology from indoor or outdoor areas. A feature vector is created for each recognized moving object, then machine learning algorithms are applied to extract moving object activities. The proposed abnormal event detection system gives very promising results which are more than 96% accuracy in Multilayer Perceptron, Iterative Classifier Optimizer, and Random Forest algorithms.
Seneviratne, Piyumi, Perera, Dilanka, Samarasekara, Harinda, Keppitiyagama, Chamath, Thilakarathna, Kenneth, De Soyza, Kasun, Wijesekara, Primal.  2020.  Impact of Video Surveillance Systems on ATM PIN Security. 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). :59–64.
ATM transactions are verified using two-factor authentication. The PIN is one of the factors (something you know) and the ATM Card is the other factor (something you have). Therefore, banks make significant investments on PIN Mailers and HSMs to preserve the security and confidentiality in the generation, validation, management and the delivery of the PIN to their customers. Moreover, banks install surveillance cameras inside ATM cubicles as a physical security measure to prevent fraud and theft. However, in some cases, ATM PIN-Pad and the PIN entering process get revealed through the surveillance camera footage itself. We demonstrate that visibility of forearm movements is sufficient to infer PINs with a significant level of accuracy. Video footage of the PIN entry process simulated in an experimental setup was analyzed using two approaches. The human observer-based approach shows that a PIN can be guessed with a 30% of accuracy within 3 attempts whilst the computer-assisted analysis of footage gave an accuracy of 50%. The results confirm that ad-hoc installation of surveillance cameras can weaken ATM PIN security significantly by potentially exposing one factor of a two-factor authentication system. Our investigation also revealed that there are no guidelines, standards or regulations governing the placement of surveillance cameras inside ATM cubicles in Sri Lanka.
2021-07-02
Lehman, Sarah M., Alrumayh, Abrar S., Ling, Haibin, Tan, Chiu C..  2020.  Stealthy Privacy Attacks Against Mobile AR Apps. 2020 IEEE Conference on Communications and Network Security (CNS). :1—5.
The proliferation of mobile augmented reality applications and the toolkits to create them have serious implications for user privacy. In this paper, we explore how malicious AR app developers can leverage capabilities offered by commercially available AR libraries, and describe how edge computing can be used to address this privacy problem.
2021-06-24
Wu, Chongke, Shao, Sicong, Tunc, Cihan, Hariri, Salim.  2020.  Video Anomaly Detection using Pre-Trained Deep Convolutional Neural Nets and Context Mining. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Anomaly detection is critically important for intelligent surveillance systems to detect in a timely manner any malicious activities. Many video anomaly detection approaches using deep learning methods focus on a single camera video stream with a fixed scenario. These deep learning methods use large-scale training data with large complexity. As a solution, in this paper, we show how to use pre-trained convolutional neural net models to perform feature extraction and context mining, and then use denoising autoencoder with relatively low model complexity to provide efficient and accurate surveillance anomaly detection, which can be useful for the resource-constrained devices such as edge devices of the Internet of Things (IoT). Our anomaly detection model makes decisions based on the high-level features derived from the selected embedded computer vision models such as object classification and object detection. Additionally, we derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method. We use two UCSD datasets to demonstrate that our approach with relatively low model complexity can achieve comparable performance compared to the state-of-the-art approaches.
2021-05-18
Chu, Wen-Yi, Yu, Ting-Guang, Lin, Yu-Kai, Lee, Shao-Chuan, Hsiao, Hsu-Chun.  2020.  On Using Camera-based Visible Light Communication for Security Protocols. 2020 IEEE Security and Privacy Workshops (SPW). :110–117.
In security protocol design, Visible Light Communication (VLC) has often been abstracted as an ideal channel that is resilient to eavesdropping, manipulation, and jamming. Camera Communication (CamCom), a subcategory of VLC, further strengthens the level of security by providing a visually verifiable association between the transmitter and the extracted information. However, the ideal security guarantees of visible light channels may not hold in practice due to limitations and tradeoffs introduced by hardware, software, configuration, environment, etc. This paper presents our experience and lessons learned from implementing CamCom for security protocols. We highlight CamCom's security-enhancing properties and security applications that it enables. Backed by real implementation and experiments, we also systematize the practical considerations of CamCom-based security protocols.
2021-05-13
Zhang, Mingyue, Zhou, Junlong, Cao, Kun, Hu, Shiyan.  2020.  Trusted Anonymous Authentication For Vehicular Cyber-Physical Systems. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :37—44.
In vehicular cyber-physical systems, the mounted cameras on the vehicles, together with the fixed roadside cameras, can produce pictorial data for multiple purposes. In this process, ensuring the security and privacy of vehicles while guaranteeing efficient data transmission among vehicles is critical. This motivates us to propose a trusted anonymous authentication scheme for vehicular cyber-physical systems and Internet-of-Things. Our scheme is designed based on a three-tier architecture which contains cloud layer, fog layer, and user layer. It utilizes bilinear-free certificateless signcryption to realize a secure and trusted anonymous authentication efficiently. We verify its effectiveness through theoretical analyses in terms of correctness, security, and efficiency. Furthermore, our simulation results demonstrate that the communication overhead, the computation overhead, and the packet loss rate of the proposed scheme are significantly better than those of the state-of-the-art techniques. Particularly, the proposed scheme can speed up the computation process at least 10× compared to all the state-of-the-art approaches.
2021-04-08
Mayer, O., Stamm, M. C..  2020.  Forensic Similarity for Digital Images. IEEE Transactions on Information Forensics and Security. 15:1331—1346.
In this paper, we introduce a new digital image forensics approach called forensic similarity, which determines whether two image patches contain the same forensic trace or different forensic traces. One benefit of this approach is that prior knowledge, e.g., training samples, of a forensic trace is not required to make a forensic similarity decision on it in the future. To do this, we propose a two-part deep-learning system composed of a convolutional neural network-based feature extractor and a three-layer neural network, called the similarity network. This system maps the pairs of image patches to a score indicating whether they contain the same or different forensic traces. We evaluated the system accuracy of determining whether two image patches were captured by the same or different camera model and manipulated by the same or a different editing operation and the same or a different manipulation parameter, given a particular editing operation. Experiments demonstrate applicability to a variety of forensic traces and importantly show efficacy on “unknown” forensic traces that were not used to train the system. Experiments also show that the proposed system significantly improves upon prior art, reducing error rates by more than half. Furthermore, we demonstrated the utility of the forensic similarity approach in two practical applications: forgery detection and localization, and database consistency verification.
Zheng, Y., Cao, Y., Chang, C..  2020.  A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security. 15:620—634.
With the increasing prevalent of digital devices and their abuse for digital content creation, forgeries of digital images and video footage are more rampant than ever. Digital forensics is challenged into seeking advanced technologies for forgery content detection and acquisition device identification. Unfortunately, existing solutions that address image tampering problems fail to identify the device that produces the images or footage while techniques that can identify the camera is incapable of locating the tampered content of its captured images. In this paper, a new perceptual data-device hash is proposed to locate maliciously tampered image regions and identify the source camera of the received image data as a non-repudiable attestation in digital forensics. The presented image may have been either tampered or gone through benign content preserving geometric transforms or image processing operations. The proposed image hash is generated by projecting the invariant image features into a physical unclonable function (PUF)-defined Bernoulli random space. The tamper-resistant random PUF response is unique for each camera and can only be generated upon triggered by a challenge, which is provided by the image acquisition timestamp. The proposed hash is evaluated on the modified CASIA database and CMOS image sensor-based PUF simulated using 180 nm TSMC technology. It achieves a high tamper detection rate of 95.42% with the regions of tampered content successfully located, a good authentication performance of above 98.5% against standard content-preserving manipulations, and 96.25% and 90.42%, respectively, for the more challenging geometric transformations of rotation (0 360°) and scaling (scale factor in each dimension: 0.5). It is demonstrated to be able to identify the source camera with 100% accuracy and is secure against attacks on PUF.
2021-03-01
Hynes, E., Flynn, R., Lee, B., Murray, N..  2020.  An Evaluation of Lower Facial Micro Expressions as an Implicit QoE Metric for an Augmented Reality Procedure Assistance Application. 2020 31st Irish Signals and Systems Conference (ISSC). :1–6.
Augmented reality (AR) has been identified as a key technology to enhance worker utility in the context of increasing automation of repeatable procedures. AR can achieve this by assisting the user in performing complex and frequently changing procedures. Crucial to the success of procedure assistance AR applications is user acceptability, which can be measured by user quality of experience (QoE). An active research topic in QoE is the identification of implicit metrics that can be used to continuously infer user QoE during a multimedia experience. A user's QoE is linked to their affective state. Affective state is reflected in facial expressions. Emotions shown in micro facial expressions resemble those expressed in normal expressions but are distinguished from them by their brief duration. The novelty of this work lies in the evaluation of micro facial expressions as a continuous QoE metric by means of correlation analysis to the more traditional and accepted post-experience self-reporting. In this work, an optimal Rubik's Cube solver AR application was used as a proof of concept for complex procedure assistance. This was compared with a paper-based procedure assistance control. QoE expressed by affect in normal and micro facial expressions was evaluated through correlation analysis with post-experience reports. The results show that the AR application yielded higher task success rates and shorter task durations. Micro facial expressions reflecting disgust correlated moderately to the questionnaire responses for instruction disinterest in the AR application.