Biblio
Source camera attribution of digital images has been a hot research topic in digital forensics literature. However, the thermal cameras and the radiometric data they generate stood as a nascent topic, as such devices are expensive and tailored for specific use-cases - not adapted by the masses. This has changed dramatically, with the low-cost, pluggable thermal-camera add-ons to smartphones and similar low-cost pocket-size thermal cameras introduced to consumers recently, which enabled the use of thermal imaging devices for the masses. In this paper, we are going to investigate the use of an established source device attribution method on radiometric data produced with a consumer-level, low-cost handheld thermal camera. The results we represent in this paper are promising and show that it is quite possible to attribute thermal images with their source camera.
Surveillance cameras, which is a form of Cyber Physical System, are deployed extensively to provide visual surveillance monitoring of activities of interest or anomalies. However, these cameras are at risks of physical security attacks against their physical attributes or configuration like tampering of their recording coverage, camera positions or recording configurations like focus and zoom factors. Such adversarial alteration of physical configuration could also be invoked through cyber security attacks against the camera's software vulnerabilities to administratively change the camera's physical configuration settings. When such Cyber Physical attacks occur, they affect the integrity of the targeted cameras that would in turn render these cameras ineffective in fulfilling the intended security functions. There is a significant measure of research work in detection mechanisms of cyber-attacks against these Cyber Physical devices, however it is understudied area with such mechanisms against integrity attacks on physical configuration. This research proposes the use of the novel use of deep learning algorithms to detect such physical attacks originating from cyber or physical spaces. Additionally, we proposed the novel use of deep learning-based video frame interpolation for such detection that has comparatively better performance to other anomaly detectors in spatiotemporal environments.
Person re-identification(Person Re-ID) means that images of a pedestrian from cameras in a surveillance camera network can be automatically retrieved based on one of this pedestrian's image from another camera. The appearance change of pedestrians under different cameras poses a huge challenge to person re-identification. Person re-identification systems based on deep learning can effectively extract the appearance features of pedestrians. In this paper, the feature enhancement experiment is conducted, and the result showed that the current person reidentification datasets are relatively small and cannot fully meet the need of deep training. Therefore, this paper studied the method of using generative adversarial network to extend the person re-identification datasets and proposed a label smoothing regularization for outliers with weight (LSROW) algorithm to make full use of the generated data, effectively improved the accuracy of person re-identification.
This work presents the design and implementation of a large curved display system in a virtual reality (VR) environment that supports visualization of 2D datasets (e.g., images, buttons and text). By using this system, users are allowed to interact with data in front of a wide field of view and gain a high level of perceived immersion. We exhibit two use cases of this system, including (1) a virtual image wall as the display component of a 3D user interface, and (2) an inventory interface for a VR-based educational game. The use cases demonstrate capability and flexibility of curved displays in supporting varied purposes of data interaction within virtual environments.
Social media has been one of the most efficacious and precise by speakers of public opinion. A strategy which sanctions the utilization and illustration of twitter data to conclude public conviction is discussed in this paper. Sentiments on exclusive entities with diverse strengths and intenseness are stated by public, where these sentiments are strenuously cognate to their personal mood and emotions. To examine the sentiments from natural language texts, addressing various opinions, a lot of methods and lexical resources have been propounded. A path for boosting twitter sentiment classification using various sentiment proportions as meta-level features has been proposed by this article. Analysis of tweets was done on the product iPhone 6.
Today, as surveillance systems are widely used for indoor and outdoor monitoring applications, there is a growing interest in real-time generation detection and there are many different applications for real-time generation detection and analysis. Two-dimensional videos; It is used in multimedia content-based indexing, information acquisition, visual surveillance and distributed cross-camera surveillance systems, human tracking, traffic monitoring and similar applications. It is of great importance for the development of systems for national security by following a moving target within the scope of military applications. In this research, a more efficient solution is proposed in addition to the existing methods. Therefore, we present YOLO, a new approach to object detection for military applications.
Advancements in semiconductor domain gave way to realize numerous applications in Video Surveillance using Computer vision and Deep learning, Video Surveillances in Industrial automation, Security, ADAS, Live traffic analysis etc. through image understanding improves efficiency. Image understanding requires input data with high precision which is dependent on Image resolution and location of camera. The data of interest can be thermal image or live feed coming for various sensors. Composite(CVBS) is a popular video interface capable of streaming upto HD(1920x1080) quality. Unlike high speed serial interfaces like HDMI/MIPI CSI, Analog composite video interface is a single wire standard supporting longer distances. Image understanding requires edge detection and classification for further processing. Sobel filter is one the most used edge detection filter which can be embedded into live stream. This paper proposes Zynq FPGA based system design for video surveillance with Sobel edge detection, where the input Composite video decoded (Analog CVBS input to YCbCr digital output), processed in HW and streamed to HDMI display simultaneously storing in SD memory for later processing. The HW design is scalable for resolutions from VGA to Full HD for 60fps and 4K for 24fps. The system is built on Xilinx ZC702 platform and TVP5146 to showcase the functional path.
With the rapid development of information technology, video surveillance system has become a key part in the security and protection system of modern cities. Especially in prisons, surveillance cameras could be found almost everywhere. However, with the continuous expansion of the surveillance network, surveillance cameras not only bring convenience, but also produce a massive amount of monitoring data, which poses huge challenges to storage, analytics and retrieval. The smart monitoring system equipped with intelligent video analytics technology can monitor as well as pre-alarm abnormal events or behaviours, which is a hot research direction in the field of surveillance. This paper combines deep learning methods, using the state-of-the-art framework for instance segmentation, called Mask R-CNN, to train the fine-tuning network on our datasets, which can efficiently detect objects in a video image while simultaneously generating a high-quality segmentation mask for each instance. The experiment show that our network is simple to train and easy to generalize to other datasets, and the mask average precision is nearly up to 98.5% on our own datasets.
Ever-driven by technological innovation, the Internet of Things (IoT) is continuing its exceptional evolution and growth into the common consumer space. In the wake of these developments, this paper proposes a framework for an IoT home security system that is secure, expandable, and accessible. Congruent with the ideals of the IoT, we are proposing a system utilizing an ultra-low-power wireless sensor network which would interface with a central hub via Bluetooth 4, commonly referred to as Bluetooth Low Energy (BLE), to monitor the home. Additionally, the system would interface with an Amazon Echo to accept user voice commands. The aforementioned central hub would also act as a web server and host an internet accessible configuration page from which users could monitor and customize their system. An internet-connected system would carry the capability to notify the users of system alarms via SMS or email. Finally, this proof of concept is intended to demonstrate expandability into other areas of home automation or building monitoring functions in general.