Biblio
Distributed banking platforms and services forgo centralized banks to process financial transactions. For example, M-Pesa provides distributed banking service in the developing regions so that the people without a bank account can deposit, withdraw, or transfer money. The current distributed banking systems lack the transparency in monitoring and tracking of distributed banking transactions and thus do not support auditing of distributed banking transactions for accountability. To address this issue, this paper proposes a blockchain-based distributed banking (BDB) scheme, which uses blockchain technology to leverage its built-in properties to record and track immutable transactions. BDB supports distributed financial transaction processing but is significantly different from cryptocurrencies in its design properties, simplicity, and computational efficiency. We implement a prototype of BDB using smart contract and conduct experiments to show BDB's effectiveness and performance. We further compare our prototype with the Ethereum cryptocurrency to highlight the fundamental differences and demonstrate the BDB's superior computational efficiency.
Attacks on cloud-computing services are becoming more prevalent with recent victims including Tesla, Aviva Insurance and SIM-card manufacturer Gemalto[1]. The risk posed to organisations from malicious insiders is becoming more widely known about and consequently many are now investing in hardware, software and new processes to try to detect these attacks. As for all types of attack vector, there will always be those which are not known about and those which are known about but remain exceptionally difficult to detect - particularly in a timely manner. We believe that insider attacks are of particular concern in a cloud-computing environment, and that cloud-service providers should enhance their ability to detect them by means of indirect detection. We propose a combined attack-tree and kill-chain based method for identifying multiple indirect detection measures. Specifically, the use of attack trees enables us to encapsulate all detection opportunities for insider attacks in cloud-service environments. Overlaying the attack tree on top of a kill chain in turn facilitates indirect detection opportunities higher-up the tree as well as allowing the provider to determine how far an attack has progressed once suspicious activity is detected. We demonstrate the method through consideration of a specific type of insider attack - that of attempting to capture virtual machines in transit within a cloud cluster via use of a network tap, however, the process discussed here applies equally to all cloud paradigms.
The main objective of this research work is to enhance the data storage capacity of the QR codes. By achieving the research aim, we can visualize rapid increase in application domains of QR Codes, mostly for smart cities where one needs to store bulk amount of data. Nowadays India is experiencing demonetization step taken by Prime Minister of the country and QR codes can play major role for this step. They are also helpful for cashless society as many vendors have registered themselves with different e-wallet companies like paytm, freecharge etc. These e-wallet companies have installed QR codes at cash counter of such vendors. Any time when a customer wants to pay his bills, he only needs to scan that particular QR code. Afterwards the QR code decoder application start working by taking necessary action like opening payment gateway etc. So, objective of this research study focuses on solving this issue by applying proposed methodology.