Visible to the public Biblio

Filters: Keyword is quantum physics  [Clear All Filters]
2019-10-08
Kim, S., Jin, S., Lee, Y., Park, B., Kim, H., Hong, S..  2018.  Single Trace Side Channel Analysis on Quantum Key Distribution. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :736–739.

The security of current key exchange protocols such as Diffie-Hellman key exchange is based on the hardness of number theoretic problems. However, these key exchange protocols are threatened by weak random number generators, advances to CPU power, a new attack from the eavesdropper, and the emergence of a quantum computer. Quantum Key Distribution (QKD) addresses these challenges by using quantum properties to exchange a secret key without the risk of being intercepted. Recent developments on the QKD system resulted in a stable key generation with fewer errors so that the QKD system is rapidly becoming a solid commercial proposition. However, although the security of the QKD system is guaranteed by quantum physics, its careless implementation could make the system vulnerable. In this paper, we proposed the first side-channel attack on plug-and-play QKD system. Through a single electromagnetic trace obtained from the phase modulator on Alice's side, we were able to classify the electromagnetic trace into four classes, which corresponds to the number of bit and basis combination in the BB84 protocol. We concluded that the plug-and-play QKD system is vulnerable to side-channel attack so that the countermeasure must be considered.

Arslan, B., Ulker, M., Akleylek, S., Sagiroglu, S..  2018.  A Study on the Use of Quantum Computers, Risk Assessment and Security Problems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

In the computer based solutions of the problems in today's world; if the problem has a high complexity value, different requirements can be addressed such as necessity of simultaneous operation of many computers, the long processing times for the operation of algorithms, and computers with hardware features that can provide high performance. For this reason, it is inevitable to use a computer based on quantum physics in the near future in order to make today's cryptosystems unsafe, search the servers and other information storage centers on internet very quickly, solve optimization problems in the NP-hard category with a very wide solution space and analyze information on large-scale data processing and to process high-resolution image for artificial intelligence applications. In this study, an examination of quantum approaches and quantum computers, which will be widely used in the near future, was carried out and the areas in which such innovation can be used was evaluated. Malicious or non-malicious use of quantum computers with this capacity, the advantages and disadvantages of the high performance which it provides were examined under the head of security, the effect of this recent technology on the existing security systems was investigated.