Visible to the public Biblio

Filters: Keyword is maximum likelihood estimation  [Clear All Filters]
2023-09-01
Cheng, Wei, Liu, Yi, Guilley, Sylvain, Rioul, Olivier.  2022.  Attacking Masked Cryptographic Implementations: Information-Theoretic Bounds. 2022 IEEE International Symposium on Information Theory (ISIT). :654—659.
Measuring the information leakage is critical for evaluating the practical security of cryptographic devices against side-channel analysis. Information-theoretic measures can be used (along with Fano’s inequality) to derive upper bounds on the success rate of any possible attack in terms of the number of side-channel measurements. Equivalently, this gives lower bounds on the number of queries for a given success probability of attack. In this paper, we consider cryptographic implementations protected by (first-order) masking schemes, and derive several information-theoretic bounds on the efficiency of any (second-order) attack. The obtained bounds are generic in that they do not depend on a specific attack but only on the leakage and masking models, through the mutual information between side-channel measurements and the secret key. Numerical evaluations confirm that our bounds reflect the practical performance of optimal maximum likelihood attacks.
2023-01-06
Zhang, Han, Luo, Xiaoxiao, Li, Yongfu, Sima, Wenxia, Yang, Ming.  2022.  A Digital Twin Based Fault Location Method for Transmission Lines Using the Recovery Information of Instrument Transformers. 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). :1—4.
The parameters of transmission line vary with environmental and operating conditions, thus the paper proposes a digital twin-based transmission line model. Based on synchrophasor measurements from phasor measurement units, the proposed model can use the maximum likelihood estimation (MLE) to reduce uncertainty between the digital twin and its physical counterpart. A case study has been conducted in the paper to present the influence of the uncertainty in the measurements on the digital twin for the transmission line and analyze the effectiveness of the MLE method. The results show that the proposed digital twin-based model is effective in reducing the influence of the uncertainty in the measurements and improving the fault location accuracy.
2022-12-09
Casimiro, Maria, Romano, Paolo, Garlan, David, Rodrigues, Luís.  2022.  Towards a Framework for Adapting Machine Learning Components. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :131—140.
Machine Learning (ML) models are now commonly used as components in systems. As any other component, ML components can produce erroneous outputs that may penalize system utility. In this context, self-adaptive systems emerge as a natural approach to cope with ML mispredictions, through the execution of adaptation tactics such as model retraining. To synthesize an adaptation strategy, the self-adaptation manager needs to reason about the cost-benefit tradeoffs of the applicable tactics, which is a non-trivial task for tactics such as model retraining, whose benefits are both context- and data-dependent.To address this challenge, this paper proposes a probabilistic modeling framework that supports automated reasoning about the cost/benefit tradeoffs associated with improving ML components of ML-based systems. The key idea of the proposed approach is to decouple the problems of (i) estimating the expected performance improvement after retrain and (ii) estimating the impact of ML improved predictions on overall system utility.We demonstrate the application of the proposed framework by using it to self-adapt a state-of-the-art ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection dataset. We show that by predicting system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic retraining, or reactive retraining.
2021-12-21
Grube, Tim, Egert, Rolf, Mühlhäuser, Max, Daubert, Jörg.  2021.  The Cost of Path Information: Routing in Anonymous Communication. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Anonymity is an essential asset for a variety of communication systems, like humans' communication, the internet of things, and sensor networks. Establishing and maintaining such communication systems requires the exchange of information about their participants (called subjects). However, protecting anonymity reduces the availability of subject information, as these can be leveraged to break anonymity. Additionally, established techniques for providing anonymity often reduce the efficiency of communication networks. In this paper, we model four mechanisms to share routing information and discuss them with respect to their influence on anonymity and efficiency. While there is no ``one fits all'' solution, there are suitable trade-offs to establish routing information complying with the technical capabilities of the subjects. Distributed solutions like decentralized lookup tables reduce routing information in messages at the cost of local memory consumption; other mechanisms like multi-layer encrypted path information come with higher communication overhead but reduce memory consumption for each subject.
2021-09-30
Engels, Susanne, Schellenberg, Falk, Paar, Christof.  2020.  SPFA: SFA on Multiple Persistent Faults. 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :49–56.
For classical fault analysis, a transient fault is required to be injected during runtime, e.g., only at a specific round. Instead, Persistent Fault Analysis (PFA) introduces a powerful class of fault attacks that allows for a fault to be present throughout the whole execution. One limitation of original PFA as introduced by Zhang et al. at CHES'18 is that the adversary needs know (or brute-force) the faulty values prior to the analysis. While this was addressed at a follow-up work at CHES'20, the solution is only applicable to a single faulty value. Instead, we use the potency of Statistical Fault Analysis (SFA) in the persistent fault setting, presenting Statistical Persistent Fault Analysis (SPFA) as a more general approach of PFA. As a result, any or even a multitude of unknown faults that cause an exploitable bias in the targeted round can be used to recover the cipher's secret key. Indeed, the undesired faults in the other rounds that occur due the persistent nature of the attack converge to a uniform distribution as required by SFA. We verify the effectiveness of our attack against LED and AES.
2021-05-26
Moslemi, Ramin, Davoodi, Mohammadreza, Velni, Javad Mohammadpour.  2020.  A Distributed Approach for Estimation of Information Matrix in Smart Grids and its Application for Anomaly Detection. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—7.

Statistical structure learning (SSL)-based approaches have been employed in the recent years to detect different types of anomalies in a variety of cyber-physical systems (CPS). Although these approaches outperform conventional methods in the literature, their computational complexity, need for large number of measurements and centralized computations have limited their applicability to large-scale networks. In this work, we propose a distributed, multi-agent maximum likelihood (ML) approach to detect anomalies in smart grid applications aiming at reducing computational complexity, as well as preserving data privacy among different players in the network. The proposed multi-agent detector breaks the original ML problem into several local (smaller) ML optimization problems coupled by the alternating direction method of multipliers (ADMM). Then, these local ML problems are solved by their corresponding agents, eventually resulting in the construction of the global solution (network's information matrix). The numerical results obtained from two IEEE test (power transmission) systems confirm the accuracy and efficiency of the proposed approach for anomaly detection.

2019-12-05
Bouabdellah, Mounia, Ghribi, Elias, Kaabouch, Naima.  2019.  RSS-Based Localization with Maximum Likelihood Estimation for PUE Attacker Detection in Cognitive Radio Networks. 2019 IEEE International Conference on Electro Information Technology (EIT). :1-6.

With the rapid proliferation of mobile users, the spectrum scarcity has become one of the issues that have to be addressed. Cognitive Radio technology addresses this problem by allowing an opportunistic use of the spectrum bands. In cognitive radio networks, unlicensed users can use licensed channels without causing harmful interference to licensed users. However, cognitive radio networks can be subject to different security threats which can cause severe performance degradation. One of the main attacks on these networks is the primary user emulation in which a malicious node emulates the characteristics of the primary user signals. In this paper, we propose a detection technique of this attack based on the RSS-based localization with the maximum likelihood estimation. The simulation results show that the proposed technique outperforms the RSS-based localization method in detecting the primary user emulation attacker.

2018-11-19
Samudrala, A. N., Blum, R. S..  2017.  Asymptotic Analysis of a New Low Complexity Encryption Approach for the Internet of Things, Smart Cities and Smart Grid. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). :200–204.

Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.

2018-05-30
Price-Williams, M., Heard, N., Turcotte, M..  2017.  Detecting Periodic Subsequences in Cyber Security Data. 2017 European Intelligence and Security Informatics Conference (EISIC). :84–90.

Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory'senterprise computer network.

2018-02-21
Borah, M., Roy, B. K..  2017.  Hidden attractor dynamics of a novel non-equilibrium fractional-order chaotic system and its synchronisation control. 2017 Indian Control Conference (ICC). :450–455.

This paper presents a new fractional-order hidden strange attractor generated by a chaotic system without equilibria. The proposed non-equilibrium fractional-order chaotic system (FOCS) is asymmetric, dissimilar, topologically inequivalent to typical chaotic systems and challenges the conventional notion that the presence of unstable equilibria is mandatory to ensure the existence of chaos. The new fractional-order model displays rich bifurcation undergoing a period doubling route to chaos, where the fractional order α is the bifurcation parameter. Study of the hidden attractor dynamics is carried out with the aid of phase portraits, sensitivity to initial conditions, fractal Lyapunov dimension, maximum Lyapunov exponents spectrum and bifurcation analysis. The minimum commensurate dimension to display chaos is determined. With a view to utilizing it in chaos based cryptology and coding information, a synchronisation control scheme is designed. Finally the theoretical analyses are validated by numerical simulation results which are in good agreement with the former.

2017-03-08
Boykov, Y., Isack, H., Olsson, C., Ayed, I. B..  2015.  Volumetric Bias in Segmentation and Reconstruction: Secrets and Solutions. 2015 IEEE International Conference on Computer Vision (ICCV). :1769–1777.

Many standard optimization methods for segmentation and reconstruction compute ML model estimates for appearance or geometry of segments, e.g. Zhu-Yuille [23], Torr [20], Chan-Vese [6], GrabCut [18], Delong et al. [8]. We observe that the standard likelihood term in these formu-lations corresponds to a generalized probabilistic K-means energy. In learning it is well known that this energy has a strong bias to clusters of equal size [11], which we express as a penalty for KL divergence from a uniform distribution of cardinalities. However, this volumetric bias has been mostly ignored in computer vision. We demonstrate signif- icant artifacts in standard segmentation and reconstruction methods due to this bias. Moreover, we propose binary and multi-label optimization techniques that either (a) remove this bias or (b) replace it by a KL divergence term for any given target volume distribution. Our general ideas apply to continuous or discrete energy formulations in segmenta- tion, stereo, and other reconstruction problems.

2015-05-01
Chun-Rong Huang, Chung, P.-C.J., Di-Kai Yang, Hsing-Cheng Chen, Guan-Jie Huang.  2014.  Maximum a Posteriori Probability Estimation for Online Surveillance Video Synopsis. Circuits and Systems for Video Technology, IEEE Transactions on. 24:1417-1429.

To reduce human efforts in browsing long surveillance videos, synopsis videos are proposed. Traditional synopsis video generation applying optimization on video tubes is very time consuming and infeasible for real-time online generation. This dilemma significantly reduces the feasibility of synopsis video generation in practical situations. To solve this problem, the synopsis video generation problem is formulated as a maximum a posteriori probability (MAP) estimation problem in this paper, where the positions and appearing frames of video objects are chronologically rearranged in real time without the need to know their complete trajectories. Moreover, a synopsis table is employed with MAP estimation to decide the temporal locations of the incoming foreground objects in the synopsis video without needing an optimization procedure. As a result, the computational complexity of the proposed video synopsis generation method can be significantly reduced. Furthermore, as it does not require prescreening the entire video, this approach can be applied on online streaming videos.