Biblio
The paper introduces a smart system developed with sensors that is useful for internal and external security. The system is useful for people living in houses, apartments, high officials, bank, and offices. The system is developed in two phases one for internal security like home another is external security like open areas, streets. The system is consist of a mobile application, capacitive sensing, smart routing these valuable features to ensure safety of life and wealth. This security system is wireless sensor based which is an effective alternative of cctv cameras and other available security systems. Efficiency of this system is developed after going through practical studies and prototyping. The end result explains the feasibility rate, positive impact factor, reliability of the system. More research is possible in future based on this system this research explains that.
Tracking moving objects is a task of the utmost importance to the defence community. As this task requires high accuracy, rather than employing a single detector, it has become common to use multiple ones. In such cases, the tracks produced by these detectors need to be correlated (if they belong to the same sensing modality) or associated (if they were produced by different sensing modalities). In this work, we introduce Computational-Intelligence-based methods for correlating and associating various contacts and tracks pertaining to maritime vessels in an area of interest. Fuzzy k-Nearest Neighbours will be used to conduct track correlation and Fuzzy C-Means clustering will be applied for association. In that way, the uncertainty of the track correlation and association is handled through fuzzy logic. To better model the state of the moving target, the traditional Kalman Filter will be extended using an Echo State Network. Experimental results on five different types of sensing systems will be discussed to justify the choices made in the development of our approach. In particular, we will demonstrate the judiciousness of using Fuzzy k-Nearest Neighbours and Fuzzy C-Means on our tracking system and show how the extension of the traditional Kalman Filter by a recurrent neural network is superior to its extension by other methods.
Recognizing activities in wide aerial/overhead imagery remains a challenging problem due in part to low-resolution video and cluttered scenes with a large number of moving objects. In the context of this research, we deal with two un-synchronized data sources collected in real-world operating scenarios: full-motion videos (FMV) and analyst call-outs (ACO) in the form of chat messages (voice-to-text) made by a human watching the streamed FMV from an aerial platform. We present a multi-source multi-modal activity/event recognition system for surveillance applications, consisting of: (1) detecting and tracking multiple dynamic targets from a moving platform, (2) representing FMV target tracks and chat messages as graphs of attributes, (3) associating FMV tracks and chat messages using a probabilistic graph-based matching approach, and (4) detecting spatial-temporal activity boundaries. We also present an activity pattern learning framework which uses the multi-source associated data as training to index a large archive of FMV videos. Finally, we describe a multi-intelligence user interface for querying an index of activities of interest (AOIs) by movement type and geo-location, and for playing-back a summary of associated text (ACO) and activity video segments of targets-of-interest (TOIs) (in both pixel and geo-coordinates). Such tools help the end-user to quickly search, browse, and prepare mission reports from multi-source data.