Visible to the public Biblio

Filters: Keyword is Shape  [Clear All Filters]
2020-06-26
Karthika, P., Babu, R. Ganesh, Nedumaran, A..  2019.  Machine Learning Security Allocation in IoT. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). :474—478.

The progressed computational abilities of numerous asset compelled gadgets mobile phones have empowered different research zones including picture recovery from enormous information stores for various IoT applications. The real difficulties for picture recovery utilizing cell phones in an IoT situation are the computational intricacy and capacity. To manage enormous information in IoT condition for picture recovery a light-weighted profound learning base framework for vitality obliged gadgets. The framework initially recognizes and crop face areas from a picture utilizing Viola-Jones calculation with extra face classifier to take out the identification issue. Besides, the utilizes convolutional framework layers of a financially savvy pre-prepared CNN demonstrate with characterized highlights to speak to faces. Next, highlights of the huge information vault are listed to accomplish a quicker coordinating procedure for constant recovery. At long last, Euclidean separation is utilized to discover comparability among question and archive pictures. For exploratory assessment, we made a nearby facial pictures dataset it including equally single and gathering face pictures. In the dataset can be utilized by different specialists as a scale for examination with other ongoing facial picture recovery frameworks. The trial results demonstrate that our planned framework beats other cutting edge highlight extraction strategies as far as proficiency and recovery for IoT-helped vitality obliged stages.

2020-06-12
Li, Wenyue, Yin, Jihao, Han, Bingnan, Zhu, Hongmei.  2019.  Generative Adversarial Network with Folded Spectrum for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :883—886.

Hyperspectral image (HSIs) with abundant spectral information but limited labeled dataset endows the rationality and necessity of semi-supervised spectral-based classification methods. Where, the utilizing approach of spectral information is significant to classification accuracy. In this paper, we propose a novel semi-supervised method based on generative adversarial network (GAN) with folded spectrum (FS-GAN). Specifically, the original spectral vector is folded to 2D square spectrum as input of GAN, which can generate spectral texture and provide larger receptive field over both adjacent and non-adjacent spectral bands for deep feature extraction. The generated fake folded spectrum, the labeled and unlabeled real folded spectrum are then fed to the discriminator for semi-supervised learning. A feature matching strategy is applied to prevent model collapse. Extensive experimental comparisons demonstrate the effectiveness of the proposed method.

2019-12-17
Li, Wei, Belling, Samuel W..  2018.  Symmetric Eigen-Wavefunctions of Quantum Dot Bound States Resulting from Geometric Confinement. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0266-0270.

Self-assembled semiconductor quantum dots possess an intrinsic geometric symmetry due to the crystal periodic structure. In order to systematically analyze the symmetric properties of quantum dots' bound states resulting only from geometric confinement, we apply group representation theory. We label each bound state for two kinds of popular quantum dot shapes: pyramid and half ellipsoid with the irreducible representation of the corresponding symmetric groups, i.e., C4v and C2v, respectively. Our study completes all the possible irreducible representation cases of groups C4v and C2v. Using the character theory of point groups, we predict the selection rule for electric dipole induced transitions. We also investigate the impact of quantum dot aspect ratio on the symmetric properties of the state wavefunction. This research provides a solid foundation to continue exploring quantum dot symmetry reduction or broken phenomena because of strain, band-mixing and shape irregularity. The results will benefit the researchers who are interested in quantum dot symmetry related effects such as absorption or emission spectra, or those who are studying quantum dots using analytical or numerical simulation approaches.

2019-03-22
Quweider, M., Lei, H., Zhang, L., Khan, F..  2018.  Managing Big Data in Visual Retrieval Systems for DHS Applications: Combining Fourier Descriptors and Metric Space Indexing. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :188-193.

Image retrieval systems have been an active area of research for more than thirty years progressively producing improved algorithms that improve performance metrics, operate in different domains, take advantage of different features extracted from the images to be retrieved, and have different desirable invariance properties. With the ever-growing visual databases of images and videos produced by a myriad of devices comes the challenge of selecting effective features and performing fast retrieval on such databases. In this paper, we incorporate Fourier descriptors (FD) along with a metric-based balanced indexing tree as a viable solution to DHS (Department of Homeland Security) needs to for quick identification and retrieval of weapon images. The FDs allow a simple but effective outline feature representation of an object, while the M-tree provide a dynamic, fast, and balanced search over such features. Motivated by looking for applications of interest to DHS, we have created a basic guns and rifles databases that can be used to identify weapons in images and videos extracted from media sources. Our simulations show excellent performance in both representation and fast retrieval speed.

2019-02-21
Bi, Q., Huang, Y..  2018.  A Self-organized Shape Formation Method for Swarm Controlling. 2018 37th Chinese Control Conference (CCC). :7205–7209.
This paper presents a new approach for the shape formation based on the artificial method. It refers to the basic concept in the swarm intelligence: complex behaviors of the swarm can be formed with simple rules designed in the agents. In the framework, the distance image is used to generate not only an attraction field to keep all the agents in the given shape, but also repulsive force field among the agents to make them distribute uniformly. Compared to the traditional methods based on centralized control, the algorithm has properties of distributed and simple computation, convergence and robustness, which is very suitable for the swarm robots in the real world considering the limitation of communication, collision avoidance and calculation problems. We also show that some initial sensitive method can be improved in the similar way. The simulation results prove the proposed approach is suitable for convex. non-convex and line shapes.
2018-04-11
Vasile, D. C., Svasta, P., Codreanu, N., Safta, M..  2017.  Active Tamper Detection Circuit Based on the Analysis of Pulse Response in Conductive Mesh. 2017 40th International Spring Seminar on Electronics Technology (ISSE). :1–6.

Tamper detection circuits provide the first and most important defensive wall in protecting electronic modules containing security data. A widely used procedure is to cover the entire module with a foil containing fine conductive mesh, which detects intrusion attempts. Detection circuits are further classified as passive or active. Passive circuits have the advantage of low power consumption, however they are unable to detect small variations in the conductive mesh parameters. Since modern tools provide an upper leverage over the passive method, the most efficient way to protect security modules is thus to use active circuits. The active tamper detection circuits are typically probing the conductive mesh with short pulses, analyzing its response in terms of delay and shape. The method proposed in this paper generates short pulses at one end of the mesh and analyzes the response at the other end. Apart from measuring pulse delay, the analysis includes a frequency domain characterization of the system, determining whether there has been an intrusion or not, by comparing it to a reference (un-tampered with) spectrum. The novelty of this design is the combined analysis, in time and frequency domains, of the small variations in mesh characteristic parameters.

2018-01-16
Bhaya, W., EbadyManaa, M..  2017.  DDoS attack detection approach using an efficient cluster analysis in large data scale. 2017 Annual Conference on New Trends in Information Communications Technology Applications (NTICT). :168–173.

Distributed Denial of Service (DDoS) attack is a congestion-based attack that makes both the network and host-based resources unavailable for legitimate users, sending flooding attack packets to the victim's resources. The non-existence of predefined rules to correctly identify the genuine network flow made the task of DDoS attack detection very difficult. In this paper, a combination of unsupervised data mining techniques as intrusion detection system are introduced. The entropy concept in term of windowing the incoming packets is applied with data mining technique using Clustering Using Representative (CURE) as cluster analysis to detect the DDoS attack in network flow. The data is mainly collected from DARPA2000, CAIDA2007 and CAIDA2008 datasets. The proposed approach has been evaluated and compared with several existing approaches in terms of accuracy, false alarm rate, detection rate, F. measure and Phi coefficient. Results indicates the superiority of the proposed approach with four out five detected phases, more than 99% accuracy rate 96.29% detection rate, around 0% false alarm rate 97.98% F-measure, and 97.98% Phi coefficient.

2017-12-28
Maslovskiy, A., Kolchigin, N., Legenkiy, M., Antyufeyeva, M..  2017.  Decomposition method for complex target RCS measuring. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). :156–159.

In this paper a method of monostatic RCS measuring in real conditions for complex shaped objects is proposed. The basic idea of the method is to provide measuring in near field zone for different parts of the object (fragments) separately. This technique is titled "decomposition method". After such measurements all RCS data are summed and one can obtain the average RCS of investigated object. Such method is much more accessible in comparison with natural measurements in far field zone. In this paper the decomposition method is tested numerically. For this a model of complex shape object (tank T-90) is divided into the fragments for some direction of view. It is shown that the sum of RCS of the fragments is close to the full object RCS for corresponding direction.

2017-12-20
An, G., Yu, W..  2017.  CAPTCHA Recognition Algorithm Based on the Relative Shape Context and Point Pattern Matching. 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :168–172.
Using shape context descriptors in the distance uneven grouping and its more extensive description of the shape feature, so this descriptor has the target contour point set deformation invariance. However, the twisted adhesions verification code have more outliers and more serious noise, the above-mentioned invariance of the shape context will become very bad, in order to solve the above descriptors' limitations, this article raise a new algorithm based on the relative shape context and point pattern matching to identify codes. And also experimented on the CSDN site's verification code, the result is that the recognition rate is higher than the traditional shape context and the response time is shorter.
2017-03-08
Sim, T., Zhang, L..  2015.  Controllable Face Privacy. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). 04:1–8.

We present the novel concept of Controllable Face Privacy. Existing methods that alter face images to conceal identity inadvertently also destroy other facial attributes such as gender, race or age. This all-or-nothing approach is too harsh. Instead, we propose a flexible method that can independently control the amount of identity alteration while keeping unchanged other facial attributes. To achieve this flexibility, we apply a subspace decomposition onto our face encoding scheme, effectively decoupling facial attributes such as gender, race, age, and identity into mutually orthogonal subspaces, which in turn enables independent control of these attributes. Our method is thus useful for nuanced face de-identification, in which only facial identity is altered, but others, such gender, race and age, are retained. These altered face images protect identity privacy, and yet allow other computer vision analyses, such as gender detection, to proceed unimpeded. Controllable Face Privacy is therefore useful for reaping the benefits of surveillance cameras while preventing privacy abuse. Our proposal also permits privacy to be applied not just to identity, but also to other facial attributes as well. Furthermore, privacy-protection mechanisms, such as k-anonymity, L-diversity, and t-closeness, may be readily incorporated into our method. Extensive experiments with a commercial facial analysis software show that our alteration method is indeed effective.

Xu, W., Cheung, S. c S., Soares, N..  2015.  Affect-preserving privacy protection of video. 2015 IEEE International Conference on Image Processing (ICIP). :158–162.

The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.

2015-05-01
Wang, S., Orwell, J., Hunter, G..  2014.  Evaluation of Bayesian and Dempster-Shafer approaches to fusion of video surveillance information. Information Fusion (FUSION), 2014 17th International Conference on. :1-7.

This paper presents the application of fusion meth- ods to a visual surveillance scenario. The range of relevant features for re-identifying vehicles is discussed, along with the methods for fusing probabilistic estimates derived from these estimates. In particular, two statistical parametric fusion methods are considered: Bayesian Networks and the Dempster Shafer approach. The main contribution of this paper is the development of a metric to allow direct comparison of the benefits of the two methods. This is achieved by generalising the Kelly betting strategy to accommodate a variable total stake for each sample, subject to a fixed expected (mean) stake. This metric provides a method to quantify the extra information provided by the Dempster-Shafer method, in comparison to a Bayesian Fusion approach. 

Woon Cho, Abidi, M.A., Kyungwon Jeong, Nahyun Kim, Seungwon Lee, Joonki Paik, Gwang-Gook Lee.  2014.  Object retrieval using scene normalized human model for video surveillance system. Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on. :1-2.

This paper presents a human model-based feature extraction method for a video surveillance retrieval system. The proposed method extracts, from a normalized scene, object features such as height, speed, and representative color using a simple human model based on multiple-ellipse. Experimental results show that the proposed system can effectively track moving routes of people such as a missing child, an absconder, and a suspect after events.