Visible to the public Biblio

Filters: Keyword is Automotive cyber-physical systems  [Clear All Filters]
2020-03-02
Vatanparvar, Korosh, Al Faruque, Mohammad Abdullah.  2019.  Self-Secured Control with Anomaly Detection and Recovery in Automotive Cyber-Physical Systems. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :788–793.

Cyber-Physical Systems (CPS) are growing with added complexity and functionality. Multidisciplinary interactions with physical systems are the major keys to CPS. However, sensors, actuators, controllers, and wireless communications are prone to attacks that compromise the system. Machine learning models have been utilized in controllers of automotive to learn, estimate, and provide the required intelligence in the control process. However, their estimation is also vulnerable to the attacks from physical or cyber domains. They have shown unreliable predictions against unknown biases resulted from the modeling. In this paper, we propose a novel control design using conditional generative adversarial networks that will enable a self-secured controller to capture the normal behavior of the control loop and the physical system, detect the anomaly, and recover from them. We experimented our novel control design on a self-secured BMS by driving a Nissan Leaf S on standard driving cycles while under various attacks. The performance of the design has been compared to the state-of-the-art; the self-secured BMS could detect the attacks with 83% accuracy and the recovery estimation error of 21% on average, which have improved by 28% and 8%, respectively.

2019-11-27
Wan, Jiang, Lopez, Anthony, Faruque, Mohammad Abdullah Al.  2018.  Physical Layer Key Generation: Securing Wireless Communication in Automotive Cyber-Physical Systems. ACM Trans. Cyber-Phys. Syst.. 3:13:1–13:26.

Modern automotive Cyber-Physical Systems (CPS) are increasingly adopting wireless communications for Intra-Vehicular, Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) protocols as a promising solution for challenges such as the wire harnessing problem, collision detection, and collision avoidance, traffic control, and environmental hazards. Regrettably, this new trend results in new security challenges that can put the safety and privacy of the automotive CPS and passengers at great risk. In addition, automotive wireless communication security is constrained by strict energy and performance limitations of electronic controller units and sensors. As a result, the key generation and management for secure automotive CPS wireless communication is an open research challenge. This article aims to help solve these security challenges by presenting a practical key generation technique based on the reciprocity and high spatial and temporal variation properties of the automotive wireless communication channel. Accompanying this technique is also a key length optimization algorithm to improve performance (in terms of time and energy) for safety-related applications constrained by small communication windows. To validate the practicality and effectiveness of our approach, we have conducted simulations alongside real-world experiments with vehicles and RC cars. Last, we demonstrate through simulations that we can generate keys with high security strength (keys with 67% min-entropy) with 20× reduction in code size overhead in comparison to the state-of-the-art security techniques.