Visible to the public Biblio

Filters: Keyword is belief networks  [Clear All Filters]
2023-03-31
Ankita, D, Khilar, Rashmita, Kumar, M. Naveen.  2022.  Accuracy Analysis for Predicting Human Behaviour Using Deep Belief Network in Comparison with Support Vector Machine Algorithm. 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). :1–5.
To detect human behaviour and measure accuracy of classification rate. Materials and Methods: A novel deep belief network with sample size 10 and support vector machine with sample size of 10. It was iterated at different times predicting the accuracy percentage of human behaviour. Results: Human behaviour detection utilizing novel deep belief network 87.9% accuracy compared with support vector machine 87.0% accuracy. Deep belief networks seem to perform essentially better compared to support vector machines \$(\textbackslashmathrmp=0.55)(\textbackslashtextPiˆ0.05)\$. The deep belief algorithm in computer vision appears to perform significantly better than the support vector machine algorithm. Conclusion: Within this human behaviour detection novel deep belief network has more precision than support vector machine.
Ren, Zuyu, Jiang, Weidong, Zhang, Xinyu.  2022.  Few-Shot HRRP Target Recognition Method Based on Gaussian Deep Belief Network and Model-Agnostic Meta-Learning. 2022 7th International Conference on Signal and Image Processing (ICSIP). :260–264.
In recent years, radar automatic target recognition (RATR) technology based on high-resolution range profile (HRRP) has received extensive attention in various fields. However, insufficient data on non-cooperative targets seriously affects recognition performance of this technique. For HRRP target recognition under few-shot condition, we proposed a novel gaussian deep belief network based on model-agnostic meta-learning (GDBN-MAML). In the proposed method, GDBN allowed real-value data to be transmitted over the entire network, which effectively avoided feature loss due to binarization requirements of conventional deep belief network (DBN) for data. In addition, we optimized the initial parameters of GDBN by multi-task learning based on MAML. In this way, the number of training samples required by the model for new recognition tasks could be reduced. We applied the proposed method to the HRRP recognition experiments of 3 types of 3D simulated aircraft models. The experimental results showed that the proposed method had higher recognition accuracy and generalization performance under few-shot condition compared with conventional deep learning methods.
Vinod, G., Padmapriya, Dr. G..  2022.  An Intelligent Traffic Surveillance for Detecting Real-Time Objects Using Deep Belief Networks over Convolutional Neural Networks with improved Accuracy. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–4.
Aim: Object Detection is one of the latest topics in today’s world for detection of real time objects using Deep Belief Networks. Methods & Materials: Real-Time Object Detection is performed using Deep Belief Networks (N=24) over Convolutional Neural Networks (N=24) with the split size of training and testing dataset 70% and 30% respectively. Results: Deep Belief Networks has significantly better accuracy (81.2%) compared to Convolutional Neural Networks (47.7%) and attained significance value of p = 0.083. Conclusion: Deep Belief Networks achieved significantly better object detection than Convolutional Neural Networks for identifying real-time objects in traffic surveillance.
Ming, Lan.  2022.  The Application of Dynamic Random Network Structure in the Modeling of the Combination of Core Values and Network Education in the Propagation Algorithm. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). :455–458.
The topological structure of the network relationship is described by the network diagram, and the formation and evolution process of the network is analyzed by using the cost-benefit method. Assuming that the self-interested network member nodes can connect or break the connection, the network topology model is established based on the dynamic random pairing evolution network model. The static structure of the network is studied. Respecting the psychological cognition law of college students and innovating the core value cultivation model can reverse the youth's identification dilemma with the core values, and then create a good political environment for the normal, healthy, civilized and orderly network participation of the youth. In recognition of the atmosphere, an automatic learning algorithm of Bayesian network structure that effectively integrates expert knowledge and data-driven methods is realized.
Heravi, Mohammad Mahdi Lotfi, Khorrampanah, Mahsa, Houshmand, Monireh.  2022.  Forecasting Crude Oil Prices Using Improved Deep Belief Network (IDBN) and Long-Term Short-Term Memory Network (LSTM). 2022 30th International Conference on Electrical Engineering (ICEE). :823–826.
Historically, energy resources are of strategic importance for the social welfare and economic growth. So, predicting crude oil price fluctuations is an important issue. Since crude oil price changes are affected by many risk factors in markets, this price shows more complicated nonlinear behavior and creates more risk levels for investors than in the past. We propose a new method of prediction of crude oil price to model nonlinear dynamics. The results of the experiments show that the superior performance of the model based on the proposed method against statistical previous works is statistically significant. In general, we found that the combination of the IDBN or LSTM model lowered the MSE value to 4.65, which is 0.81 lower than the related work (Chen et al. protocol), indicating an improvement in prediction accuracy.
ISSN: 2642-9527
Premalatha, N., Sujatha, S..  2022.  An Optimization driven – Deep Belief Neural Network Model for Prediction of Employment Status after Graduation. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). :1–5.
Higher education management has problems producing 100% of graduates capable of responding to the needs of industry while industry also is struggling to find qualified graduates that responded to their needs in part because of the inefficient way of evaluating problems, as well as because of weaknesses in the evaluation of problem-solving capabilities. The objective of this paper is to propose an appropriate classification model to be used for predicting and evaluating the attributes of the data set of the student in order to meet the selection criteria required by the industries in the academic field. The dataset required for this analysis was obtained from a private firm and the execution was carried out using Chimp Optimization Algorithm (COA) based Deep Belief Neural Network (COA-DBNN) and the obtained results are compared with various classifiers such as Logistic Regression (LR), Decision Tree (DT) and Random Forest (RF). The proposed model outperforms other classifiers in terms of various performance metrics. This critical analysis will help the college management to make a better long-term plan for producing graduates who are skilled, knowledgeable and fulfill the industry needs as well.
Liu, Pengjuan, Ma, Jindou.  2022.  Rolling Bearing Fault Diagnosis based on Deep Belief Network. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :685–688.
In view of the characteristics that rolling bearing is prone to failure under actual working conditions, and it is difficult to classify the fault category and fault degree, the deep belief network is introduced to diagnose the rolling bearing fault. Firstly, principal component analysis is used to reduce the dimension of original input data and delete redundant input information. Then, the dimension reduced data are input into the deep belief network to extract the low dimensional fault feature representation, and the extracted features are input into the classifier for rolling bearing fault pattern recognition. Finally, the diagnosis effect of the proposed network is compared with the existing common shallow neural network. The simulation experiment is carried out through the bearing data in the United States.
Tong, Yan, Ku, Zhaoyu, Chen, Nanxin, Sheng, Hu.  2022.  Research on Mechanical Fault Diagnosis of Vacuum Circuit Breaker Based on Deep Belief Network. 2022 2nd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :259–263.
VCB is an important component to ensure the safe and smooth operation of the power system. As an important driving part of the vacuum circuit breaker, the operating mechanism is prone to mechanical failure, which leads to power grid accidents. This paper offers an in-depth analysis of the mechanical faults of the operating mechanism of vacuum circuit breaker and their causes, extracts the current signal of the opening and closing coil strongly correlated with the mechanical faults of the operating mechanism as the characteristic information to build a Deep Belief Network (DBN) model, trains each data set via Restricted Boltzmann Machine(RBM) and updates the model parameters. The number of hidden layer nodes, the structure of the network layer, and the learning rate are determined, and the mechanical fault diagnosis system of vacuum circuit breaker based on the Deep Belief Network is established. The results show that when the network structure is 8-110-110-6 and the learning rate is 0.01, the recognition accuracy of the DBN model is the highest, which is 0.990871. Compared with BP neural network, DBN has a smaller cross-entropy error and higher accuracy. This method can accurately diagnose the mechanical fault of the vacuum circuit breaker, which lays a foundation for the smooth operation of the power system.
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
Hata, Yuya, Hayashi, Naoki, Makino, Yusuke, Takada, Atsushi, Yamagoe, Kyoko.  2022.  Alarm Correlation Method Using Bayesian Network in Telecommunications Networks. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
In the operation of information technology (IT) services, operators monitor the equipment-issued alarms, to locate the cause of a failure and take action. Alarms generate simultaneously from multiple devices with physical/logical connections. Therefore, if the time and location of the alarms are close to each other, it can be judged that the alarms are likely to be caused by the same event. In this paper, we propose a method that takes a novel approach by correlating alarms considering event units using a Bayesian network based on alarm generation time, generation place, and alarm type. The topology information becomes a critical decision element when doing the alarm correlation. However, errors may occur when topology information updates manually during failures or construction. Therefore, we show that event-by-event correlation with 100% accuracy is possible even if the topology information is 25% wrong by taking into location information other than topology information.
ISSN: 2576-8565
2021-04-27
Furutani, S., Shibahara, T., Hato, K., Akiyama, M., Aida, M..  2020.  Sybil Detection as Graph Filtering. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Sybils are users created for carrying out nefarious actions in online social networks (OSNs) and threaten the security of OSNs. Therefore, Sybil detection is an urgent security task, and various detection methods have been proposed. Existing Sybil detection methods are based on the relationship (i.e., graph structure) of users in OSNs. Structure-based methods can be classified into two categories: Random Walk (RW)-based and Belief Propagation (BP)-based. However, although almost all methods have been experimentally evaluated in terms of their performance and robustness to noise, the theoretical understanding of them is insufficient. In this paper, we interpret the Sybil detection problem from the viewpoint of graph signal processing and provide a framework to formulate RW- and BPbased methods as low-pass filtering. This framework enables us to theoretically compare RW- and BP-based methods and explain why BP-based methods perform well for scale-free graphs, unlike RW-based methods. Furthermore, by this framework, we relate RW- and BP-based methods and Graph Neural Networks (GNNs) and discuss the difference among these methods. Finally, we evaluate the validity of this framework through numerical experiments.
Ma, C., Wang, L., Gai, C., Yang, D., Zhang, P., Zhang, H., Li, C..  2020.  Frequency Security Assessment for Receiving-end System Based on Deep Learning Method. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :831–836.
For hours-ahead assessment of power systems with a high penetration level of renewable generation, a large number of uncertain scenarios should be checked to ensure the frequency security of the system after the severe power disturbance following HVDC blocking. In this situation, the full time-domain simulation is unsuitable as a result of the heavy calculation burden. To fulfill the quick assessment of the frequency security, the online frequency security assessment framework based on deep learning is proposed in this paper. The Deep Belief Network (DBN) method is used to establish the framework. The sample generation method is researched to generate representative samples for the purposed of higher assessment accuracy. A large-scale AC-DC interconnected power grid is adopted to verify the validity of the proposed assessment method.
Matthews, I., Mace, J., Soudjani, S., Moorsel, A. van.  2020.  Cyclic Bayesian Attack Graphs: A Systematic Computational Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :129–136.
Attack graphs are commonly used to analyse the security of medium-sized to large networks. Based on a scan of the network and likelihood information of vulnerabilities, attack graphs can be transformed into Bayesian Attack Graphs (BAGs). These BAGs are used to evaluate how security controls affect a network and how changes in topology affect security. A challenge with these automatically generated BAGs is that cycles arise naturally, which make it impossible to use Bayesian network theory to calculate state probabilities. In this paper we provide a systematic approach to analyse and perform computations over cyclic Bayesian attack graphs. We present an interpretation of Bayesian attack graphs based on combinational logic circuits, which facilitates an intuitively attractive systematic treatment of cycles. We prove properties of the associated logic circuit and present an algorithm that computes state probabilities without altering the attack graphs (e.g., remove an arc to remove a cycle). Moreover, our algorithm deals seamlessly with any cycle without the need to identify their type. A set of experiments demonstrates the scalability of the algorithm on computer networks with hundreds of machines, each with multiple vulnerabilities.
Javorník, M., Komárková, J., Sadlek, L., Husak, M..  2020.  Decision Support for Mission-Centric Network Security Management. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
In this paper, we propose a decision support process that is designed to help network and security operators in understanding the complexity of a current security situation and decision making concerning ongoing cyber-attacks and threats. The process focuses on enterprise missions and uses a graph-based mission decomposition model that captures the missions, underlying hosts and services in the network, and functional and security requirements between them. Knowing the vulnerabilities and attacker's position in the network, the process employs logical attack graphs and Bayesian network to infer the probability of the disruption of the confidentiality, integrity, and availability of the missions. Based on the probabilities of disruptions, the process suggests the most resilient mission configuration that would withstand the current security situation.
Yermalovich, P., Mejri, M..  2020.  Information security risk assessment based on decomposition probability via Bayesian Network. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
Well-known approaches to risk analysis suggest considering the level of an information system risk as one frame in a film. This means that we only can perform a risk assessment for the current point in time. This article explores the idea of risk assessment in a future period, as a prediction of what we will see in the film later. In other words, the article presents an approach to predicting a potential future risk and suggests the idea of relying on forecasting the likelihood of an attack on information system assets. To establish the risk level at a selected time interval in the future, one has to perform a mathematical decomposition. To do this, we need to select the required information system parameters for the predictions and their statistical data for risk assessment. This method can be used to ensure more detailed budget planning when ensuring the protection of the information system. It can be also applied in case of a change of the information protection configuration to satisfy the accepted level of risk associated with projected threats and vulnerabilities.
Marchisio, A., Nanfa, G., Khalid, F., Hanif, M. A., Martina, M., Shafique, M..  2020.  Is Spiking Secure? A Comparative Study on the Security Vulnerabilities of Spiking and Deep Neural Networks 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
Spiking Neural Networks (SNNs) claim to present many advantages in terms of biological plausibility and energy efficiency compared to standard Deep Neural Networks (DNNs). Recent works have shown that DNNs are vulnerable to adversarial attacks, i.e., small perturbations added to the input data can lead to targeted or random misclassifications. In this paper, we aim at investigating the key research question: "Are SNNs secure?" Towards this, we perform a comparative study of the security vulnerabilities in SNNs and DNNs w.r.t. the adversarial noise. Afterwards, we propose a novel black-box attack methodology, i.e., without the knowledge of the internal structure of the SNN, which employs a greedy heuristic to automatically generate imperceptible and robust adversarial examples (i.e., attack images) for the given SNN. We perform an in-depth evaluation for a Spiking Deep Belief Network (SDBN) and a DNN having the same number of layers and neurons (to obtain a fair comparison), in order to study the efficiency of our methodology and to understand the differences between SNNs and DNNs w.r.t. the adversarial examples. Our work opens new avenues of research towards the robustness of the SNNs, considering their similarities to the human brain's functionality.
Xie, J., She, H., Chen, X., Zhang, H., Niu, Y..  2020.  Test Method for Automatic Detection Capability of Civil Aviation Security Equipment Using Bayesian Estimation. 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT. :831–835.
There are a lot of emerging security equipment required to be tested on detection rate (DR) and false alarm rate (FAR) for prohibited items. This article imports Bayesian approach to accept or reject DR and FAR. The detailed quantitative predictions can be made through the posterior distribution obtained by Markov chain Monte Carlo method. Based on this, HDI + ROPE decision rule is established. For the tests that need to make early decision, HDI + ROPE stopping rule is presented with biased estimate value, and criterial precision rule is presented with unbiased estimate value. Choosing the stopping rule according to the test purpose can achieve the balance of efficiency and accuracy.
Li, Y., Zhou, Y., Hu, K., Sun, N., Ke, K..  2020.  A Security Situation Prediction Method Based on Improved Deep Belief Network. 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT. :594–598.
With the rapid development of smart grids and the continuous deepening of informatization, while realizing remote telemetry and remote control of massive data-based grid operation, electricity information network security problems have become more serious and prominent. A method for electricity information network security situation prediction method based on improved deep belief network is proposed in this paper. Firstly, the affinity propagation clustering algorithm is used to determine the depth of the deep belief network and the number of hidden layer nodes based on sample parameters. Secondly, continuously adjust the scaling factor and crossover probability in the differential evolution algorithm according to the population similarity. Finally, a chaotic search method is used to perform a second search for the best individuals and similarity centers of each generation of the population. Simulation experiments show that the proposed algorithm not only enhances the generalization ability of electricity information network security situation prediction, but also has higher prediction accuracy.
Yu, X., Li, T., Hu, A..  2020.  Time-series Network Anomaly Detection Based on Behaviour Characteristics. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :568–572.
In the application scenarios of cloud computing, big data, and mobile Internet, covert and diverse network attacks have become a serious problem that threatens the security of enterprises and personal information assets. Abnormal network behaviour detection based on network behaviour characteristics has become an important means to protect network security. However, existing frameworks do not make full use of the characteristics of the correlation between continuous network behaviours, and do not use an algorithm that can process time-series data or process the original feature set into time-series data to match the algorithm. This paper proposes a time-series abnormal network behaviour detection framework. The framework consists of two parts: an algorithm model (DBN-BiGRU) that combines Deep Belief Network (DBN) and Bidirectional Gated Recurrent Unit (BiGRU), and a pre-processing scheme that processes the original feature analysis files of CICIDS2017 to good time-series data. This detection framework uses past and future behaviour information to determine current behaviours, which can improve accuracy, and can adapt to the large amount of existing network traffic and high-dimensional characteristics. Finally, this paper completes the training of the algorithm model and gets the test results. Experimental results show that the prediction accuracy of this framework is as high as 99.82%, which is better than the traditional frameworks that do not use time-series information.
2021-02-03
Gao, L., Sun, J., Li, J..  2020.  Security of Networked Control Systems with Incomplete Information Based on Game Theory. 2020 39th Chinese Control Conference (CCC). :6701—6706.

The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.

2020-12-01
Abdulhammed, R., Faezipour, M., Musafer, H., Abuzneid, A..  2019.  Efficient Network Intrusion Detection Using PCA-Based Dimensionality Reduction of Features. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.

Designing a machine learning based network intrusion detection system (IDS) with high-dimensional features can lead to prolonged classification processes. This is while low-dimensional features can reduce these processes. Moreover, classification of network traffic with imbalanced class distributions has posed a significant drawback on the performance attainable by most well-known classifiers. With the presence of imbalanced data, the known metrics may fail to provide adequate information about the performance of the classifier. This study first uses Principal Component Analysis (PCA) as a feature dimensionality reduction approach. The resulting low-dimensional features are then used to build various classifiers such as Random Forest (RF), Bayesian Network, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) for designing an IDS. The experimental findings with low-dimensional features in binary and multi-class classification show better performance in terms of Detection Rate (DR), F-Measure, False Alarm Rate (FAR), and Accuracy. Furthermore, in this paper, we apply a Multi-Class Combined performance metric Combi ned Mc with respect to class distribution through incorporating FAR, DR, Accuracy, and class distribution parameters. In addition, we developed a uniform distribution based balancing approach to handle the imbalanced distribution of the minority class instances in the CICIDS2017 network intrusion dataset. We were able to reduce the CICIDS2017 dataset's feature dimensions from 81 to 10 using PCA, while maintaining a high accuracy of 99.6% in multi-class and binary classification.

2020-10-12
Okutan, Ahmet, Cheng, Fu-Yuan, Su, Shao-Hsuan, Yang, Shanchieh Jay.  2019.  Dynamic Generation of Empirical Cyberattack Models with Engineered Alert Features. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Due to the increased diversity and complexity of cyberattacks, innovative and effective analytics are needed in order to identify critical cyber incidents on a corporate network even if no ground truth data is available. This paper develops an automated system which processes a set of intrusion alerts to create behavior aggregates and then classifies these aggregates into empirical attack models through a dynamic Bayesian approach with innovative feature engineering methods. Each attack model represents a unique collective attack behavior that helps to identify critical activities on the network. Using 2017 National Collegiate Penetration Testing Competition data, it is demonstrated that the developed system is capable of generating and refining unique attack models that make sense to human, without a priori knowledge.
2020-08-24
Liang, Dai, Pan, Peisheng.  2019.  Research on Intrusion Detection Based on Improved DBN-ELM. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :495–499.
To leverage the feature extraction of DBN and the fast classification and good generalization of ELM, an improved method of DBN-ELM is proposed for intrusion detection. The improved model uses deep belief network (DBN) to train NSL-KDD dataset and feed them back to the extreme learning machine (ELM) for classification. A classifier is connected at each intermediate level of the DBN-ELM. By majority voting on the output of classifier and ELM, the final output is calculated by integration. Experiments show that the improved model increases the classification confidence and accuracy of the classifier. The model has been benchmarked on the NSL-KDD dataset, and the accuracy of the model has been improved to 97.82%, while the false alarm rate has been reduced to 1.81%. Proposed improved model has been also compared with DBN, ELM, DBN-ELM and achieves competitive accuracy.
Raghavan, Pradheepan, Gayar, Neamat El.  2019.  Fraud Detection using Machine Learning and Deep Learning. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :334–339.
Frauds are known to be dynamic and have no patterns, hence they are not easy to identify. Fraudsters use recent technological advancements to their advantage. They somehow bypass security checks, leading to the loss of millions of dollars. Analyzing and detecting unusual activities using data mining techniques is one way of tracing fraudulent transactions. transactions. This paper aims to benchmark multiple machine learning methods such as k-nearest neighbor (KNN), random forest and support vector machines (SVM), while the deep learning methods such as autoencoders, convolutional neural networks (CNN), restricted boltzmann machine (RBM) and deep belief networks (DBN). The datasets which will be used are the European (EU) Australian and German dataset. The Area Under the ROC Curve (AUC), Matthews Correlation Coefficient (MCC) and Cost of failure are the 3-evaluation metrics that would be used.
Sarma, Subramonian Krishna.  2019.  Optimized Activation Function on Deep Belief Network for Attack Detection in IoT. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :702–708.
This paper mainly focuses on presenting a novel attack detection system to thread out the risk issues in IoT. The presented attack detection system links the interconnection of DevOps as it creates the correlation between development and IT operations. Further, the presented attack detection model ensures the operational security of different applications. In view of this, the implemented system incorporates two main stages named Proposed Feature Extraction process and Classification. The data from every application is processed with the initial stage of feature extraction, which concatenates the statistical and higher-order statistical features. After that, these extracted features are supplied to classification process, where determines the presence of attacks. For this classification purpose, this paper aims to deploy the optimized Deep Belief Network (DBN), where the activation function is tuned optimally. Furthermore, the optimal tuning is done by a renowned meta-heuristic algorithm called Lion Algorithm (LA). Finally, the performance of proposed work is compared and proved over other conventional methods.