Visible to the public Biblio

Filters: Keyword is Multimedia systems  [Clear All Filters]
2023-08-11
Rojali, Rasjid, Zulfany Erlisa, Matthew, Justin Cliff.  2022.  Implementation of Rail Fence Cipher and Myszkowski Algorithms and Secure Hash Algorithm (SHA-256) for Security and Detecting Digital Image Originality. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :207—212.
The use of digital images is increasingly widespread currently. There is a need for security in digital photos. Cryptography is a technique that can be applied to secure data. In addition to safety, data integrity also needs to be considered to anticipate the image being manipulated. The hash function is a technique that can be used to determine data authentication. In this study, the Rail Fence Cipher and Myszkowski algorithms were used for the encryption and decryption of digital images, as the Secure Hash Algorithm (SHA-256) algorithm. Rail Fence Cipher Algorithm is a transposition algorithm that is quite simple but still vulnerable. It is combined with the Myszkowski Algorithm, which has a high level of complexity with a simple key. Secure Hash Algorithm (SHA-256) is a hash function that accepts an input limit of fewer than 2∧64 bits and produces a fixed hash value of 256 bits. The tested images vary based on image resolution and can be encrypted and decrypted well, with an average MSE value of 4171.16 and an average PSNR value of 11.96 dB. The hash value created is also unique. Keywords—Cryptography, Hash Function, Rail Fence Cipher, Myszkowski, SHA-256, Digital image.
2023-07-13
Mammenp, Asha, KN, Sreehari, Bhakthavatchalu, Ramesh.  2022.  Implementation of Efficient Hybrid Encryption Technique. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–4.
Security troubles of restricted sources communications are vital. Existing safety answers aren't sufficient for restricted sources gadgets in phrases of Power Area and Ef-ficiency‘. Elliptic curves cryptosystem (ECC) is area efficent for restricted sources gadgets extra than different uneven cryp-to systems because it gives a better safety degree with equal key sizes compared to different present techniques. In this paper, we studied a lightweight hybrid encryption technique that makes use of set of rules primarily based totally on AES for the Plain text encription and Elliptic Curve Diffie-Hellman (ECDH) protocol for Key encryption. The simplicity of AES implementation makes it light weight and the complexity of ECDH make it secure. The design is simulated using Spyder Tool, Modelsim and Implemented using Xilinx Vivado the effects display that the proposed lightweight Model offers a customary security degree with decreased computing capacity. we proposed a key authentication system for enhanced security along with an Idea to implement the project with multimedia input on FPGA
2022-12-20
Zhan, Yike, Zheng, Baolin, Wang, Qian, Mou, Ningping, Guo, Binqing, Li, Qi, Shen, Chao, Wang, Cong.  2022.  Towards Black-Box Adversarial Attacks on Interpretable Deep Learning Systems. 2022 IEEE International Conference on Multimedia and Expo (ICME). :1–6.
Recent works have empirically shown that neural network interpretability is susceptible to malicious manipulations. However, existing attacks against Interpretable Deep Learning Systems (IDLSes) all focus on the white-box setting, which is obviously unpractical in real-world scenarios. In this paper, we make the first attempt to attack IDLSes in the decision-based black-box setting. We propose a new framework called Dual Black-box Adversarial Attack (DBAA) which can generate adversarial examples that are misclassified as the target class, yet have very similar interpretations to their benign cases. We conduct comprehensive experiments on different combinations of classifiers and interpreters to illustrate the effectiveness of DBAA. Empirical results show that in all the cases, DBAA achieves high attack success rates and Intersection over Union (IoU) scores.
2022-06-14
Yasa, Ray Novita, Buana, I Komang Setia, Girinoto, Setiawan, Hermawan, Hadiprakoso, Raden Budiarto.  2021.  Modified RNP Privacy Protection Data Mining Method as Big Data Security. 2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS. :30–34.
Privacy-Preserving Data Mining (PPDM) has become an exciting topic to discuss in recent decades due to the growing interest in big data and data mining. A technique of securing data but still preserving the privacy that is in it. This paper provides an alternative perturbation-based PPDM technique which is carried out by modifying the RNP algorithm. The novelty given in this paper are modifications of some steps method with a specific purpose. The modifications made are in the form of first narrowing the selection of the disturbance value. With the aim that the number of attributes that are replaced in each record line is only as many as the attributes in the original data, no more and no need to repeat; secondly, derive the perturbation function from the cumulative distribution function and use it to find the probability distribution function so that the selection of replacement data has a clear basis. The experiment results on twenty-five perturbed data show that the modified RNP algorithm balances data utility and security level by selecting the appropriate disturbance value and perturbation value. The level of security is measured using privacy metrics in the form of value difference, average transformation of data, and percentage of retains. The method presented in this paper is fascinating to be applied to actual data that requires privacy preservation.
2021-08-31
Di Noia, Tommaso, Malitesta, Daniele, Merra, Felice Antonio.  2020.  TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :1–8.
Deep learning classifiers are hugely vulnerable to adversarial examples, and their existence raised cybersecurity concerns in many tasks with an emphasis on malware detection, computer vision, and speech recognition. While there is a considerable effort to investigate attacks and defense strategies in these tasks, only limited work explores the influence of targeted attacks on input data (e.g., images, textual descriptions, audio) used in multimedia recommender systems (MR). In this work, we examine the consequences of applying targeted adversarial attacks against the product images of a visual-based MR. We propose a novel adversarial attack approach, called Target Adversarial Attack against Multimedia Recommender Systems (TAaMR), to investigate the modification of MR behavior when the images of a category of low recommended products (e.g., socks) are perturbed to misclassify the deep neural classifier towards the class of more recommended products (e.g., running shoes) with human-level slight images alterations. We explore the TAaMR approach studying the effect of two targeted adversarial attacks (i.e., FGSM and PGD) against input pictures of two state-of-the-art MR (i.e., VBPR and AMR). Extensive experiments on two real-world recommender fashion datasets confirmed the effectiveness of TAaMR in terms of recommendation lists changing while keeping the original human judgment on the perturbed images.
2021-04-08
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
2021-03-15
Azahari, A. M., Ahmad, A., Rahayu, S. B., Halip, M. H. Mohamed.  2020.  CheckMyCode: Assignment Submission System with Cloud-Based Java Compiler. 2020 8th International Conference on Information Technology and Multimedia (ICIMU). :343–347.
Learning programming language of Java is a basic part of the Computer Science and Engineering curriculum. Specific Java compiler is a requirement for writing and convert the writing code to executable format. However, some local installed Java compiler is suffering from compatibility, portability and storage space issues. These issues sometimes affect student-learning interest and slow down the learning process. This paper is directed toward the solution for such problems, which offers a new programming assignment submission system with cloud-based Java compiler and is known as CheckMyCode. Leveraging cloud-computing technology in terms of its availability, prevalence and affordability, CheckMyCode implements Java cloud-based programming compiler as a part of the assignment management system. CheckMyCode system is a cloud-based system that allows both main users, which are a lecturer and student to access the system via a browser on PC or smart devices. Modules of submission assignment system with cloud compiler allow lecturer and student to manage Java programming task in one platform. A framework, system module, main user and feature of CheckMyCode are presented. Also, taking into account are the future study/direction and new enhancement of CheckMyCode.
2021-02-03
Martin, S., Parra, G., Cubillo, J., Quintana, B., Gil, R., Perez, C., Castro, M..  2020.  Design of an Augmented Reality System for Immersive Learning of Digital Electronic. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE). :1—6.

This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.

2021-01-15
Katarya, R., Lal, A..  2020.  A Study on Combating Emerging Threat of Deepfake Weaponization. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :485—490.
A breakthrough in the emerging use of machine learning and deep learning is the concept of autoencoders and GAN (Generative Adversarial Networks), architectures that can generate believable synthetic content called deepfakes. The threat lies when these low-tech doctored images, videos, and audios blur the line between fake and genuine content and are used as weapons to cause damage to an unprecedented degree. This paper presents a survey of the underlying technology of deepfakes and methods proposed for their detection. Based on a detailed study of all the proposed models of detection, this paper presents SSTNet as the best model to date, that uses spatial, temporal, and steganalysis for detection. The threat posed by document and signature forgery, which is yet to be explored by researchers, has also been highlighted in this paper. This paper concludes with the discussion of research directions in this field and the development of more robust techniques to deal with the increasing threats surrounding deepfake technology.
2020-07-16
Ciupe, Aurelia, Mititica, Doru Florin, Meza, Serban, Orza, Bogdan.  2019.  Learning Agile with Intelligent Conversational Agents. 2019 IEEE Global Engineering Education Conference (EDUCON). :1100—1107.

Conversational agents assist traditional teaching-learning instruments in proposing new designs for knowledge creation and learning analysis, across organizational environments. Means of building common educative background in both industry and academic fields become of interest for ensuring educational effectiveness and consistency. Such a context requires transferable practices and becomes the basis for the Agile adoption into Higher Education, at both curriculum and operational levels. The current work proposes a model for delivering Agile Scrum training through an assistive web-based conversational service, where analytics are collected to provide an overview on learners' knowledge path. Besides its specific applicability into Software Engineering (SE) industry, the model is to assist the academic SE curriculum. A user-acceptance test has been carried out among 200 undergraduate students and patterns of interaction have been depicted for 2 conversational strategies.

2019-04-01
Liu, F., Li, Z., Li, X., Lv, T..  2018.  A Text-Based CAPTCHA Cracking System with Generative Adversarial Networks. 2018 IEEE International Symposium on Multimedia (ISM). :192–193.
As a multimedia security mechanism, CAPTCHAs are completely automated public turing test to tell computers and humans apart. Although cracking CAPTCHA has been explored for many years, it is still a challenging problem for real practice. In this demo, we present a text based CAPTCHA cracking system by using convolutional neural networks(CNN). To solve small sample problem, we propose to combine conditional deep convolutional generative adversarial networks(cDCGAN) and CNN, which makes a tremendous progress in accuracy. In addition, we also select multiple models with low pearson correlation coefficients for majority voting ensemble, which further improves the accuracy. The experimental results show that the system has great advantages and provides a new mean for cracking CAPTCHAs.
2019-02-08
Tayel, M., Dawood, G., Shawky, H..  2018.  A Proposed Serpent-Elliptic Hybrid Cryptosystem For Multimedia Protection. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :387-391.

Cryptography is a widespread technique that maintains information security over insecure networks. The symmetric encryption scheme provides a good security, but the key exchange is difficult on the other hand, in the asymmetric encryption scheme, key management is easier, but it does not offer the same degree of security compared to symmetric scheme. A hybrid cryptosystem merges the easiness of the asymmetric schemes key distribution and the high security of symmetric schemes. In the proposed hybrid cryptosystem, Serpent algorithm is used as a data encapsulation scheme and Elliptic Curve Cryptography (ECC) is used as a key encapsulation scheme to achieve key generation and distribution within an insecure channel. This modification is done to tackle the issue of key management for Serpent algorithm, so it can be securely used in multimedia protection.

2017-12-27
Kotel, S., Sbiaa, F., Zeghid, M., Machhout, M., Baganne, A., Tourki, R..  2016.  Efficient Hybrid Encryption System Based on Block Cipher and Chaos Generator. 2016 IEEE International Conference on Computer and Information Technology (CIT). :375–382.

In recent years, more and more multimedia data are generated and transmitted in various fields. So, many encryption methods for multimedia content have been put forward to satisfy various applications. However, there are still some open issues. Each encryption method has its advantages and drawbacks. Our main goal is expected to provide a solution for multimedia encryption which satisfies the target application constraints and performs metrics of the encryption algorithm. The Advanced Encryption Standard (AES) is the most popular algorithm used in symmetric key cryptography. Furthermore, chaotic encryption is a new research direction of cryptography which is characterized by high initial-value sensitivity and good randomness. In this paper we propose a hybrid video cryptosystem which combines two encryption techniques. The proposed cryptosystem realizes the video encryption through the chaos and AES in CTR mode. Experimental results and security analysis demonstrate that this cryptosystem is highly efficient and a robust system for video encryption.

2015-05-04
Bianchi, T., Piva, A..  2014.  TTP-free asymmetric fingerprinting protocol based on client side embedding. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :3987-3991.

In this paper, we propose a scheme to employ an asymmetric fingerprinting protocol within a client-side embedding distribution framework. The scheme is based on a novel client-side embedding technique that is able to transmit a binary fingerprint. This enables secure distribution of personalized decryption keys containing the Buyer's fingerprint by means of existing asymmetric protocols, without using a trusted third party. Simulation results show that the fingerprint can be reliably recovered by using non-blind decoding, and it is robust with respect to common attacks. The proposed scheme can be a valid solution to both customer's rights and scalability issues in multimedia content distribution.

2015-05-01
Yueguo Zhang, Lili Dong, Shenghong Li, Jianhua Li.  2014.  Abnormal crowd behavior detection using interest points. Broadband Multimedia Systems and Broadcasting (BMSB), 2014 IEEE International Symposium on. :1-4.

Abnormal crowd behavior detection is an important research issue in video processing and computer vision. In this paper we introduce a novel method to detect abnormal crowd behaviors in video surveillance based on interest points. A complex network-based algorithm is used to detect interest points and extract the global texture features in scenarios. The performance of the proposed method is evaluated on publicly available datasets. We present a detailed analysis of the characteristics of the crowd behavior in different density crowd scenes. The analysis of crowd behavior features and simulation results are also demonstrated to illustrate the effectiveness of our proposed method.