Visible to the public Biblio

Filters: Keyword is Computing Theory and Trust  [Clear All Filters]
2021-06-01
Zhu, Luqi, Wang, Jin, Shi, Lianmin, Zhou, Jingya, Lu, Kejie, Wang, Jianping.  2020.  Secure Coded Matrix Multiplication Against Cooperative Attack in Edge Computing. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :547–556.
In recent years, the computation security of edge computing has been raised as a major concern since the edge devices are often distributed on the edge of the network, less trustworthy than cloud servers and have limited storage/ computation/ communication resources. Recently, coded computing has been proposed to protect the confidentiality of computing data under edge device's independent attack and minimize the total cost (resource consumption) of edge system. In this paper, for the cooperative attack, we design an efficient scheme to ensure the information-theory security (ITS) of user's data and further reduce the total cost of edge system. Specifically, we take matrix multiplication as an example, which is an important module appeared in many application operations. Moreover, we theoretically analyze the necessary and sufficient conditions for the existence of feasible scheme, prove the security and decodeability of the proposed scheme. We also prove the effectiveness of the proposed scheme through considerable simulation experiments. Compared with the existing schemes, the proposed scheme further reduces the total cost of edge system. The experiments also show a trade-off between storage and communication.
Hashemi, Seyed Mahmood.  2020.  Intelligent Approaches for the Trust Assessment. 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). :348–352.
There is a need for suitable approaches to trust assessment to cover the problems of human life. Trust assessment for the information communication related to the quality of service (QoS). The server sends data packets to the client(s) according to the trust assessment. The motivation of this paper is designing a proper approach for the trust assessment process. We propose two methods that are based on the fuzzy systems and genetic algorithm. We compare the results of proposed approaches that can guide to select the proper approaches.
Naderi, Pooria Taghizadeh, Taghiyareh, Fattaneh.  2020.  LookLike: Similarity-based Trust Prediction in Weighted Sign Networks. 2020 6th International Conference on Web Research (ICWR). :294–298.
Trust network is widely considered to be one of the most important aspects of social networks. It has many applications in the field of recommender systems and opinion formation. Few researchers have addressed the problem of trust/distrust prediction and, it has not yet been established whether the similarity measures can do trust prediction. The present paper aims to validate that similar users have related trust relationships. To predict trust relations between two users, the LookLike algorithm was introduced. Then we used the LookLike algorithm results as new features for supervised classifiers to predict the trust/distrust label. We chose a list of similarity measures to examined our claim on four real-world trust network datasets. The results demonstrated that there is a strong correlation between users' similarity and their opinion on trust networks. Due to the tight relation between trust prediction and truth discovery, we believe that our similarity-based algorithm could be a promising solution in their challenging domains.
Thakare, Vaishali Ravindra, Singh, K. John, Prabhu, C S R, Priya, M..  2020.  Trust Evaluation Model for Cloud Security Using Fuzzy Theory. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–4.
Cloud computing is a new kind of computing model which allows users to effectively rent virtualized computing resources on pay as you go model. It offers many advantages over traditional models in IT industries and healthcare as well. However, there is lack of trust between CSUs and CSPs to prevent the extensive implementation of cloud technologies amongst industries. Different models are developed to overcome the uncertainty and complexity between CSP and CSU regarding suitability. Several researchers focused on resource optimization, scheduling and service dependability in cloud computing by using fuzzy logic. But, data storage and security using fuzzy logic have been ignored. In this paper, a trust evaluation model is proposed for cloud computing security using fuzzy theory. Authors evaluates how fuzzy logic increases efficiency in trust evaluation. To validate the effectiveness of proposed FTEM, authors presents a case study of healthcare organization.
Mohammed, Alshaimaa M., Omara, Fatma A..  2020.  A Framework for Trust Management in Cloud Computing Environment. 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). :7–13.
Cloud Computing is considered as a business model for providing IT resources as services through the Internet based on pay-as-you-go principle. These IT resources are provided by Cloud Service Providers (CSPs) and requested by Cloud Service Consumers (CSCs). Selecting the proper CSP to deliver services is a critical and strategic process. According to the work in this paper, a framework for trust management in cloud computing has been introduced. The proposed framework consists of five stages; Filtrating, Trusting, Similarity, Ranking and Monitoring. In the Filtrating stage, the existing CSPs in the system will be filtered based on their parameters. The CSPs trust values are calculated in the Trusting stage. Then, the similarity between the CSC requirements and the CSPs data is calculated in the Similarity stage. The ranking of CSPs will be performed in Ranking stage. According to the Monitoring stage, after finishing the service, the CSC sends his feedbacks about the CSP who delivered the service to be used to monitor this CSP. To evaluate the performance of the proposed framework, a comparative study has been done for the Ranking and Monitoring stages using Armor dataset. According to the comparative results it is found that the proposed framework increases the reliability and performance of the cloud environment.
Yan, Qifei, Zhou, Yan, Zou, Li, Li, Yanling.  2020.  Evidence Fusion Method Based on Evidence Trust and Exponential Weighting. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1851–1855.
In order to solve the problems of unreasonable fusion results of high conflict evidence and ineffectiveness of coefficient weighting in classical evidence theory, a method of evidence fusion based on evidence trust degree and exponential weighting is proposed. Firstly, the fusion factor is constructed based on probability distribution function and evidence trust degree, then the fusion factor is exponentially weighted by evidence weight, and then the evidence fusion rule based on fusion factor is constructed. The results show that this method can effectively solve the problems of unreasonable fusion results of high conflict evidence and ineffectiveness of coefficient weighting. It shows that the new fusion method are more reasonable, which provides a new idea and method for solving the problems in evidence theory.
Zheng, Yang, Chunlin, Yin, Zhengyun, Fang, Na, Zhao.  2020.  Trust Chain Model and Credibility Analysis in Software Systems. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :153–156.
The credibility of software systems is an important indicator in measuring the performance of software systems. Effective analysis of the credibility of systems is a controversial topic in the research of trusted software. In this paper, the trusted boot and integrity metrics of a software system are analyzed. The different trust chain models, chain and star, are obtained by using different methods for credibility detection of functional modules in the system operation. Finally, based on the operation of the system, trust and failure relation graphs are established to analyze and measure the credibility of the system.
Hatti, Daneshwari I., Sutagundar, Ashok V..  2020.  Trust Induced Resource Provisioning (TIRP) Mechanism in IoT. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
Due to increased number of devices with limited resources in Internet of Things (IoT) has to serve time sensitive applications including health monitoring, emergency response, industrial applications and smart city etc. This has incurred the problem of solving the provisioning of limited computational resources of the devices to fulfill the requirement with reduced latency. With rapid increase of devices and heterogeneity characteristic the resource provisioning is crucial and leads to conflict of trusting among the devices requests. Trust is essential component in any context for communicating or sharing the resources in the network. The proposed work comprises of trusting and provisioning based on deadline. Trust quantity is measured with concept of game theory and optimal strategy decision among provider and customer and provision resources within deadline to execute the tasks is done by finding Nash equilibrium. Nash equilibrium (NE) is estimated by constructing the payoff matrix with choice of two player strategies. NE is obtained in the proposed work for the Trust- Respond (TR) strategy. The latency aware approach for avoiding resource contention due to limited resources of the edge devices, fog computing leverages the cloud services in a distributed way at the edge of the devices. The communication is established between edge devices-fog-cloud and provision of resources is performed based on scalar chain and Gang Plank theory of management to reduce latency and increase trust quantity. To test the performance of proposed work performance parameter considered are latency and computational time.
Wang, Qi, Zhao, Weiliang, Yang, Jian, Wu, Jia, Zhou, Chuan, Xing, Qianli.  2020.  AtNE-Trust: Attributed Trust Network Embedding for Trust Prediction in Online Social Networks. 2020 IEEE International Conference on Data Mining (ICDM). :601–610.
Trust relationship prediction among people provides valuable supports for decision making, information dissemination, and product promotion in online social networks. Network embedding has achieved promising performance for link prediction by learning node representations that encode intrinsic network structures. However, most of the existing network embedding solutions cannot effectively capture the properties of a trust network that has directed edges and nodes with in/out links. Furthermore, there usually exist rich user attributes in trust networks, such as ratings, reviews, and the rated/reviewed items, which may exert significant impacts on the formation of trust relationships. It is still lacking a network embedding-based method that can adequately integrate these properties for trust prediction. In this work, we develop an AtNE-Trust model to address these issues. We firstly capture user embedding from both the trust network structures and user attributes. Then we design a deep multi-view representation learning module to further mine and fuse the obtained user embedding. Finally, a trust evaluation module is developed to predict the trust relationships between users. Representation learning and trust evaluation are optimized together to capture high-quality user embedding and make accurate predictions simultaneously. A set of experiments against the real-world datasets demonstrates the effectiveness of the proposed approach.
Gu, Yanyang, Zhang, Ping, Chen, Zhifeng, Cao, Fei.  2020.  UEFI Trusted Computing Vulnerability Analysis Based on State Transition Graph. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1043–1052.
In the face of increasingly serious firmware attacks, it is of great significance to analyze the vulnerability security of UEFI. This paper first introduces the commonly used trusted authentication mechanisms of UEFI. Then, aiming at the loopholes in the process of UEFI trust verification in the startup phase, combined with the state transition diagram, PageRank algorithm and Bayesian network theory, the analysis model of UEFI trust verification startup vulnerability is constructed. And according to the example to verify the analysis. Through the verification and analysis of the data obtained, the vulnerable attack paths and key vulnerable nodes are found. Finally, according to the analysis results, security enhancement measures for UEFI are proposed.
2021-02-01
Han, W., Schulz, H.-J..  2020.  Beyond Trust Building — Calibrating Trust in Visual Analytics. 2020 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). :9–15.
Trust is a fundamental factor in how users engage in interactions with Visual Analytics (VA) systems. While the importance of building trust to this end has been pointed out in research, the aspect that trust can also be misplaced is largely ignored in VA so far. This position paper addresses this aspect by putting trust calibration in focus – i.e., the process of aligning the user’s trust with the actual trustworthiness of the VA system. To this end, we present the trust continuum in the context of VA, dissect important trust issues in both VA systems and users, as well as discuss possible approaches that can build and calibrate trust.
2019-12-09
Tomić, Ivana, Chen, Po-Yu, Breza, Michael J., McCann, Julie A..  2018.  Antilizer: Run Time Self-Healing Security for Wireless Sensor Networks. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :107–116.
Wireless Sensor Network (WSN) applications range from domestic Internet of Things systems like temperature monitoring of homes to the monitoring and control of large-scale critical infrastructures. The greatest risk with the use of WSNs in critical infrastructure is their vulnerability to malicious network level attacks. Their radio communication network can be disrupted, causing them to lose or delay data which will compromise system functionality. This paper presents Antilizer, a lightweight, fully-distributed solution to enable WSNs to detect and recover from common network level attack scenarios. In Antilizer each sensor node builds a self-referenced trust model of its neighbourhood using network overhearing. The node uses the trust model to autonomously adapt its communication decisions. In the case of a network attack, a node can make neighbour collaboration routing decisions to avoid affected regions of the network. Mobile agents further bound the damage caused by attacks. These agents enable a simple notification scheme which propagates collaborative decisions from the nodes to the base station. A filtering mechanism at the base station further validates the authenticity of the information shared by mobile agents. We evaluate Antilizer in simulation against several routing attacks. Our results show that Antilizer reduces data loss down to 1% (4% on average), with operational overheads of less than 1% and provides fast network-wide convergence.
Yang, Chao, Chen, Xinghe, Song, Tingting, Jiang, Bin, Liu, Qin.  2018.  A Hybrid Recommendation Algorithm Based on Heuristic Similarity and Trust Measure. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1413–1418.
In this paper, we propose a hybrid collaborative filtering recommendation algorithm based on heuristic similarity and trust measure, in order to alleviate the problem of data sparsity, cold start and trust measure. Firstly, a new similarity measure is implemented by weighted fusion of multiple similarity influence factors obtained from the rating matrix, so that the similarity measure becomes more accurate. Then, a user trust relationship computing model is implemented by constructing the user's trust network based on the trust propagation theory. On this basis, a SIMT collaborative filtering algorithm is designed which integrates trust and similarity instead of the similarity in traditional collaborative filtering algorithm. Further, an improved K nearest neighbor recommendation based on clustering algorithm is implemented for generation of a better recommendation list. Finally, a comparative experiment on FilmTrust dataset shows that the proposed algorithm has improved the quality and accuracy of recommendation, thus overcome the problem of data sparsity, cold start and trust measure to a certain extent.
Rani, Rinki, Kumar, Sushil, Dohare, Upasana.  2019.  Trust Evaluation for Light Weight Security in Sensor Enabled Internet of Things: Game Theory Oriented Approach. IEEE Internet of Things Journal. 6:8421–8432.
In sensor-enabled Internet of Things (IoT), nodes are deployed in an open and remote environment, therefore, are vulnerable to a variety of attacks. Recently, trust-based schemes have played a pivotal role in addressing nodes' misbehavior attacks in IoT. However, the existing trust-based schemes apply network wide dissemination of the control packets that consume excessive energy in the quest of trust evaluation, which ultimately weakens the network lifetime. In this context, this paper presents an energy efficient trust evaluation (EETE) scheme that makes use of hierarchical trust evaluation model to alleviate the malicious effects of illegitimate sensor nodes and restricts network wide dissemination of trust requests to reduce the energy consumption in clustered-sensor enabled IoT. The proposed EETE scheme incorporates three dilemma game models to reduce additional needless transmissions while balancing the trust throughout the network. Specially: 1) a cluster formation game that promotes the nodes to be cluster head (CH) or cluster member to avoid the extraneous cluster; 2) an optimal cluster formation dilemma game to affirm the minimum number of trust recommendations for maintaining the balance of the trust in a cluster; and 3) an activity-based trust dilemma game to compute the Nash equilibrium that represents the best strategy for a CH to launch its anomaly detection technique which helps in mitigation of malicious activity. Simulation results show that the proposed EETE scheme outperforms the current trust evaluation schemes in terms of detection rate, energy efficiency and trust evaluation time for clustered-sensor enabled IoT.
Robert, Henzel, Georg, Herzwurm.  2018.  A preliminary approach towards the trust issue in cloud manufacturing using grounded theory: Defining the problem domain. 2018 4th International Conference on Universal Village (UV). :1–6.
In Cloud Manufacturing trust is an important, under investigated issue. This paper proceeds the noncommittal phase of the grounded theory method approach by investigating the trust topic in several research streams, defining the problem domain. This novel approach fills a research gap and can be treated as a snapshot and blueprint of research. Findings were accomplished by a structured literature review and are able to help future researchers in pursuing the integrative phase in Grounded Theory by building on the preliminary result of this paper.
Gao, Yali, Li, Xiaoyong, Li, Jirui, Gao, Yunquan, Yu, Philip S..  2019.  Info-Trust: A Multi-Criteria and Adaptive Trustworthiness Calculation Mechanism for Information Sources. IEEE Access. 7:13999–14012.
Social media have become increasingly popular for the sharing and spreading of user-generated content due to their easy access, fast dissemination, and low cost. Meanwhile, social media also enable the wide propagation of cyber frauds, which leverage fake information sources to reach an ulterior goal. The prevalence of untrustworthy information sources on social media can have significant negative societal effects. In a trustworthy social media system, trust calculation technology has become a key demand for the identification of information sources. Trust, as one of the most complex concepts in network communities, has multi-criteria properties. However, the existing work only focuses on single trust factor, and does not consider the complexity of trust relationships in social computing completely. In this paper, a multi-criteria trustworthiness calculation mechanism called Info-Trust is proposed for information sources, in which identity-based trust, behavior-based trust, relation-based trust, and feedback-based trust factors are incorporated to present an accuracy-enhanced full view of trustworthiness evaluation of information sources. More importantly, the weights of these factors are dynamically assigned by the ordered weighted averaging and weighted moving average (OWA-WMA) combination algorithm. This mechanism surpasses the limitations of existing approaches in which the weights are assigned subjectively. The experimental results based on the real-world datasets from Sina Weibo demonstrate that the proposed mechanism achieves greater accuracy and adaptability in trustworthiness identification of the network information.
Alemán, Concepción Sánchez, Pissinou, Niki, Alemany, Sheila, Boroojeni, Kianoosh, Miller, Jerry, Ding, Ziqian.  2018.  Context-Aware Data Cleaning for Mobile Wireless Sensor Networks: A Diversified Trust Approach. 2018 International Conference on Computing, Networking and Communications (ICNC). :226–230.

In mobile wireless sensor networks (MWSN), data imprecision is a common problem. Decision making in real time applications may be greatly affected by a minor error. Even though there are many existing techniques that take advantage of the spatio-temporal characteristics exhibited in mobile environments, few measure the trustworthiness of sensor data accuracy. We propose a unique online context-aware data cleaning method that measures trustworthiness by employing an initial candidate reduction through the analysis of trust parameters used in financial markets theory. Sensors with similar trajectory behaviors are assigned trust scores estimated through the calculation of “betas” for finding the most accurate data to trust. Instead of devoting all the trust into a single candidate sensor's data to perform the cleaning, a Diversified Trust Portfolio (DTP) is generated based on the selected set of spatially autocorrelated candidate sensors. Our results show that samples cleaned by the proposed method exhibit lower percent error when compared to two well-known and effective data cleaning algorithms in tested outdoor and indoor scenarios.

Tucker, Scot.  2018.  Engineering Trust: A Graph-Based Algorithm for Modeling, Validating, and Evaluating Trust. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1–9.
Trust is an important topic in today's interconnected world. Breaches of trust in today's systems has had profound effects upon us all, and they are very difficult and costly to fix especially when caused by flaws in the system's architecture. Trust modeling can expose these types of issues, but modeling trust in complex multi-tiered system architectures can be very difficult. Often experts have differing views of trust and how it applies to systems within their domain. This work presents a graph-based modeling methodology that normalizes the application of trust across disparate system domains allowing the modeling of complex intersystem trust relationships. An algorithm is proposed that applies graph theory to model, validate and evaluate trust in system architectures. Also, it provides the means to apply metrics to compare and prioritize the effectiveness of trust management in system and component architectures. The results produced by the algorithm can be used in conjunction with systems engineering processes to ensure both trust and the efficient use of resources.
Li, Wenjuan, Cao, Jian, Hu, Keyong, Xu, Jie, Buyya, Rajkumar.  2019.  A Trust-Based Agent Learning Model for Service Composition in Mobile Cloud Computing Environments. IEEE Access. 7:34207–34226.
Mobile cloud computing has the features of resource constraints, openness, and uncertainty which leads to the high uncertainty on its quality of service (QoS) provision and serious security risks. Therefore, when faced with complex service requirements, an efficient and reliable service composition approach is extremely important. In addition, preference learning is also a key factor to improve user experiences. In order to address them, this paper introduces a three-layered trust-enabled service composition model for the mobile cloud computing systems. Based on the fuzzy comprehensive evaluation method, we design a novel and integrated trust management model. Service brokers are equipped with a learning module enabling them to better analyze customers' service preferences, especially in cases when the details of a service request are not totally disclosed. Because traditional methods cannot totally reflect the autonomous collaboration between the mobile cloud entities, a prototype system based on the multi-agent platform JADE is implemented to evaluate the efficiency of the proposed strategies. The experimental results show that our approach improves the transaction success rate and user satisfaction.
Yuan, Jie, Li, Xiaoyong.  2018.  A Reliable and Lightweight Trust Computing Mechanism for IoT Edge Devices Based on Multi-Source Feedback Information Fusion. IEEE Access. 6:23626–23638.
The integration of Internet of Things (IoT) and edge computing is currently a new research hotspot. However, the lack of trust between IoT edge devices has hindered the universal acceptance of IoT edge computing as outsourced computing services. In order to increase the adoption of IoT edge computing applications, first, IoT edge computing architecture should establish efficient trust calculation mechanism to alleviate the concerns of numerous users. In this paper, a reliable and lightweight trust mechanism is originally proposed for IoT edge devices based on multi-source feedback information fusion. First, due to the multi-source feedback mechanism is used for global trust calculation, our trust calculation mechanism is more reliable against bad-mouthing attacks caused by malicious feedback providers. Then, we adopt lightweight trust evaluating mechanism for cooperations of IoT edge devices, which is suitable for largescale IoT edge computing because it facilitates low-overhead trust computing algorithms. At the same time, we adopt a feedback information fusion algorithm based on objective information entropy theory, which can overcome the limitations of traditional trust schemes, whereby the trust factors are weighted manually or subjectively. And the experimental results show that the proposed trust calculation scheme significantly outperforms existing approaches in both computational efficiency and reliability.
2019-07-01
Nwebonyi, Francis N., Martins, Rolando, Correia, Manuel E..  2018.  Reputation-Based Security System For Edge Computing. Proceedings of the 13th International Conference on Availability, Reliability and Security. :39:1-39:8.

Given the centralized architecture of cloud computing, there is a genuine concern about its ability to adequately cope with the demands of connecting devices which are sharply increasing in number and capacity. This has led to the emergence of edge computing technologies, including but not limited to mobile edge-clouds. As a branch of Peer-to-Peer (P2P) networks, mobile edge-clouds inherits disturbing security concerns which have not been adequately addressed in previous methods. P2P security systems have featured many trust-based methods owing to their suitability and cost advantage, but these approaches still lack in a number of ways. They mostly focus on protecting client nodes from malicious service providers, but downplay the security of service provider nodes, thereby creating potential loopholes for bandwidth attack. Similarly, trust bootstrapping is often via default scores, or based on heuristics that does not reflect the identity of a newcomer. This work has patched these inherent loopholes and improved fairness among participating peers. The use cases of mobile edge-clouds have been particularly considered and a scalable reputation based security mechanism was derived to suit them. BitTorrent protocol was modified to form a suitable test bed, using Peersim simulator. The proposed method was compared to some related methods in the literature through detailed simulations. Results show that the new method can foster trust and significantly improve network security, in comparison to previous similar systems.

2019-02-08
Jensen, Theodore, Albayram, Yusuf, Khan, Mohammad Maifi Hasan, Buck, Ross, Coman, Emil, Fahim, Md Abdullah Al.  2018.  Initial Trustworthiness Perceptions of a Drone System Based on Performance and Process Information. Proceedings of the 6th International Conference on Human-Agent Interaction. :229-237.

Prior work notes dispositional, learned, and situational aspects of trust in automation. However, no work has investigated the relative role of these factors in initial trust of an automated system. Moreover, trust in automation researchers often consider trust unidimensionally, whereas ability, integrity, and benevolence perceptions (i.e., trusting beliefs) may provide a more thorough understanding of trust dynamics. To investigate this, we recruited 163 participants on Amazon's Mechanical Turk (MTurk) and randomly assigned each to one of 4 videos describing a hypothetical drone system: one control, the others with additional system performance or process, or both types of information. Participants reported on trusting beliefs in the system, propensity to trust other people, risk-taking tendencies, and trust in the government law enforcement agency behind the system. We found that financial risk-taking tendencies influenced trusting beliefs. Also, those who received process information were likely to have higher integrity and ability beliefs than those not receiving process information, while those who received performance information were likely to have higher ability beliefs. Lastly, perceptions of structural assurance positively influenced all three trusting beliefs. Our findings suggest that a) users' risk-taking tendencies influence trustworthiness perceptions of systems, b) different types of information about a system have varied effects on the trustworthiness dimensions, and c) institutions play an important role in users' calibration of trust. Insights gained from this study can help design training materials and interfaces that improve user trust calibration in automated systems.